
Cybersecurity
Course Readings:
Course 7

Table of Contents

1

Course 7 Overview
Helpful Resources + Tips
Get to know Python
Python environments
More about data types
Assign and reassign variables in Python
More on conditionals in Python
More on loops in Python

Python functions in cybersecurity
Functions and variables
Work with built-in functions
Import modules and libraries in Python
Ensure proper syntax and readability in Python

Strings and the security analyst
Lists and the security analyst
More about regular expressions

Course 7_ Module 1
3-5
6-7
8-9

10-11
12-15
16-17
18-21

22-26

Course 7_ Module 2
27-29
30-33
34-36
37-39
40-42

Course 7_ Module 3

43-46
47-51
52-55

Please note, some links in this PDF may only be accessible by creating an account and enrolling in the certificate: https://goo.gle/47Sw5kz

https://goo.gle/47Sw5kz

Table of Contents continued

2

Essential Python components for automation
Import files into Python
Work with files in Python
Explore debugging techniques
Get started on the next course

Course 7_ Module 4

56-58
59-62
63-66
67-71

72

Please note, some links in this PDF may only be accessible by creating an account and enrolling in the certificate: https://goo.gle/47Sw5kz

https://goo.gle/47Sw5kz

Module 4

Course 7 - module 1
Hello, and welcome to Automate Cybersecurity Tasks with Python, the seventh course in the Google
Cybersecurity Certificate. You’re on an exciting journey!

By the end of this course, you will develop a greater understanding of computer programming in Python
and how Python can be effectively used to automate security-related tasks. You will start with key
foundational concepts in Python, including data types, variables, conditional statements, and iterative
statements. You'll then develop functions in Python and work with string and list data in a variety of ways.
Finally, you'll explore algorithms that involve importing and parsing files.

Certificate program progress

The Google Cybersecurity Certificate program has eight courses. Automate Cybersecurity Tasks with
Python is the seventh course.

3

1. Foundations of Cybersecurity — Explore the cybersecurity profession, including significant
events that led to the development of the cybersecurity field and its continued importance to
organizational operations. Learn about entry-level cybersecurity roles and responsibilities.

2. Play It Safe: Manage Security Risks — Identify how cybersecurity professionals use frameworks
and controls to protect business operations, and explore common cybersecurity tools.

3. Connect and Protect: Networks and Network Security — Gain an understanding of
network-level vulnerabilities and how to secure networks.

4. Tools of the Trade: Linux and SQL — Explore foundational computing skills, including
communicating with the Linux operating system through the command line and querying
databases with SQL.

5. Assets, Threats, and Vulnerabilities — Learn about the importance of security controls and
developing a threat actor mindset to protect and defend an organization’s assets from various
threats, risks, and vulnerabilities.

6. Sound the Alarm: Detection and Response — Understand the incident response lifecycle and
practice using tools to detect and respond to cybersecurity incidents.

7. Automate Cybersecurity Tasks with Python — (current course) Explore the Python
programming language and write code to automate cybersecurity tasks.

8. Put It to Work: Prepare for Cybersecurity Jobs — Learn about incident classification, escalation,
and ways to communicate with stakeholders. This course closes out the program with tips on how
to engage with the cybersecurity community and prepare for your job search.

Module 3Module 2Module 1

https://www.coursera.org/learn/foundations-of-cybersecurity/home/week/1
https://www.coursera.org/learn/manage-security-risks/home/week/1
https://www.coursera.org/learn/networks-and-network-security/home/week/1
https://www.coursera.org/learn/linux-and-sql/home/week/1
https://www.coursera.org/learn/assets-threats-and-vulnerabilities/home/week/1
https://www.coursera.org/learn/detection-and-response/home/week/1
https://www.coursera.org/learn/automate-cybersecurity-tasks-with-python/home/week/1
https://www.coursera.org/learn/prepare-for-cybersecurity-jobs/home/week/1

Course 7 content
Each course of this certificate program is broken into weeks. You can complete courses at your own pace,
but the weekly breakdowns are designed to help you finish the entire Google Cybersecurity Certificate in
about six months.

What’s to come? Here’s a quick overview of the skills you’ll learn in each week of this course.

Week 1: Introduction to Python

4

You will get an introduction to the Python programming language and how Python is used in
cybersecurity. You'll also explore foundational Python concepts, including data types, variables,
conditional statements, and iterative statements.

Week 2: Write effective Python code

You will expand your ability to work with Python. You'll learn about prebuilt and user-defined Python
functions. You'll also explore how modules help provide access to reusable code. Finally, you'll focus on
code readability.

Week 3: Work with strings and lists

You will learn more options for working with strings and lists in Python, and you will discover methods that
can be applied to these data types. You'll apply this knowledge to write a short algorithm. Finally, you'll use
regular expressions to search for patterns in strings.

Module 4Module 3Module 2Module 1

5

You will put Python into practice and focus on automating cybersecurity-related tasks. You'll be
introduced to opening and reading files. Then, you'll learn to parse files and structure their contents.
Finally, you'll focus on strategies for debugging code.

What to expect
Each course offers many types of learning opportunities:

● V ideos led by Google instructors teach new concepts, introduce the use of relevant tools, offer
career support, and provide inspirational personal stories.

● Readings build on the topics discussed in the videos, introduce related concepts, share useful
resources, and describe case studies.

● D iscussion prompts explore course topics for better understanding and allow you to chat and
exchange ideas with other learners in the discussion forums.

● Self-review activities and labs give you hands-on practice in applying the skills you are learning
and allow you to assess your own work by comparing it to a completed example.

● Interactive plug-ins encourage you to practice specific tasks and help you integrate knowledge
you have gained in the course.

● In-video quizzes help you check your comprehension as you progress through each video.
● Practice quizzes allow you to check your understanding of key concepts and provide valuable

feedback.
● Graded quizzes demonstrate your understanding of the main concepts of a course. You must

score 80% or higher on each graded quiz to obtain a certificate, and you can take a graded quiz
multiple times to achieve a passing score.

Tips for success
● It is strongly recommended that you go through the items in each lesson in the order they appear

because new information and concepts build on previous knowledge.
● Participate in all learning opportunities to gain as much knowledge and experience as possible.
● If something is confusing, don’t hesitate to replay a video, review a reading, or repeat a self-review

activity.
● Use the additional resources that are referenced in this course. They are designed to support your

learning. You can find all of these resources in the Resources tab.
● W hen you encounter useful links in this course, bookmark them so you can refer to the

information later for study or review.
● Understand and follow the Coursera Code of Conduct to ensure that the learning community

remains a welcoming, friendly, and supportive place for all members.

Week 4: Python in practice

Module 4Module 3Module 2Module 1

https://www.coursera.org/learn/automate-cybersecurity-tasks-with-python/discussions
https://www.coursera.org/learn/automate-cybersecurity-tasks-with-python/resources/uEySV
https://www.coursera.support/s/article/208280036-Coursera-Code-of-Conduct?

Helpful resources and tips
As a learner, you can choose to complete one or multiple courses in this program. However, to obtain the
Google Cybersecurity Certificate, you must complete all the courses. This reading describes what is
required to obtain a certificate and best practices for you to have a good learning experience on
Coursera.

Course completion to obtain a certificate
To submit graded assignments and be eligible to receive a Google Cybersecurity Certificate, you must:

● Pay the course certificate fee or apply and be approved for a Coursera scholarship.
● Pass all graded quizzes in the eight courses with a score of at least 80%. Each graded quiz in a

course is part of a cumulative grade for that course.

Healthy habits for course completion
Here is a list of best practices that will help you complete the courses in the program in a timely manner:

● Plan your time: Setting regular study times and following them each week can help you make
learning a part of your routine. Use a calendar or timetable to create a schedule, and list what you
plan to do each day in order to set achievable goals. Find a space that allows you to focus when
you watch the videos, review the readings, and complete the activities.

● Work at your own pace: Everyone learns differently, so this program has been designed to let
you work at your own pace. Although your personalized deadlines start when you enroll, feel free
to move through the program at the speed that works best for you. There is no penalty for late
assignments; to earn your certificate, all you have to do is complete all of the work. You can extend
your deadlines at any time by going to Overview in the navigation panel and selecting Switch
Sessions. If you have already missed previous deadlines, select Reset my deadlines instead.

● Be curious: If you find an idea that gets you excited, act on it! Ask questions, search for more
details online, explore the links that interest you, and take notes on your discoveries. The steps you
take to support your learning along the way will advance your knowledge, create more
opportunities in this high-growth field, and help you qualify for jobs.

● Take notes: Notes will help you remember important information in the future, especially as
you’re preparing to enter a new job field. In addition, taking notes is an effective way to make
connections between topics and gain a better understanding of those topics.

● Review exemplars: Exemplars are completed assignments that fully meet an activity's criteria.
Many activities in this program have exemplars for you to validate your work or check for errors.
Although there are often many ways to complete an assignment, exemplars offer guidance and
inspiration about how to complete the activity.

● Chat (responsibly) with other learners: If you have a question, chances are, you’re not alone.
Use the discussion forums to ask for help from other learners taking this program. You can also
visit Coursera’s Global Online Community. Other important things to know while learning with
others can be found in the Coursera Honor Code and Code of Conduct.

● Update your profile: Consider updating your profile on Coursera with your photo, career goals,
and more. When other learners find you in the discussion forums, they can click on your name to
access your profile and get to know you better.

6

Module 4Module 3Module 2Module 1

https://www.coursera.support/s/article/209818963-Payments-on-Coursera?language=en_US
https://www.coursera.support/s/article/209819033-Apply-for-Financial-Aid-or-a-Scholarship?language=en_US
https://www.coursera.org/learn/networks-and-network-security/discussions
https://coursera.community/
https://learner.coursera.help/hc/en-us/articles/209818863-Coursera-Honor-Code
https://learner.coursera.help/hc/en-us/articles/208280036-Coursera-Code-of-Conduct
https://www.coursera.org/account/profile

Documents, spreadsheets, presentations, and labs for course activities
To complete certain activities in the program, you will need to use digital documents, spreadsheets,
presentations, and/or labs. Security professionals use these software tools to collaborate within their teams
and organizations. If you need more information about using a particular tool, refer to these resources:

● Microsoft Word: Help and learning: Microsoft Support page for Word
● Google Docs: Help Center page for Google Docs
● Microsoft Excel: Help and learning: Microsoft Support page for Excel
● Google Sheets: Help Center page for Google Sheets
● Microsoft PowerPoint: Help and learning: Microsoft Support page for PowerPoint
● How to use Google Slides: Help Center page for Google Slides
● Common problems with labs: Troubleshooting help for Qwiklabs activities

Weekly, course, and certificate glossaries
This program covers a lot of terms and concepts, some of which you may already know and some of which
may be unfamiliar to you. To review terms and help you prepare for graded quizzes, refer to the following
glossaries:

● Weekly glossaries: At the end of each week’s content, you can review a glossary of terms from that
week. Each week’s glossary builds upon the terms from the previous weeks in that course. The weekly
glossaries are not downloadable; however, all of the terms and definitions are included in the course
and certificate glossaries, which are downloadable.

● Course glossaries: At the end of each course, you can access and download a glossary that covers all
of the terms in that course.

● Certificate glossary: The certificate glossary includes all of the terms in the entire certificate
program and is a helpful resource that you can reference throughout the program or at any time in the
future.

You can access and download the certificate glossaries and save them on your computer. You can always find
the course and certificate glossaries through the course’s Resources section. To access the Cybersecurity
Certificate glossary, click the link below and select Use Template.

● Cybersecurity Certificate glossary OR
● If you don’t have a Google account, you can download the glossary directly from the attachment here.

Course feedback
Providing feedback on videos, readings, and other materials is easy. With the resource open in your browser,
you can find the thumbs-up and thumbs-down symbols.

● Click thumbs-up for materials you find helpful.
● Click thumbs-down for materials that you do not find helpful.

If you want to flag a specific issue with an item, click the flag icon, select a category, and enter an explanation
in the text box. This feedback goes back to the course development team and isn’t visible to other learners. All
feedback received helps to create even better certificate programs in the future.

For technical help, visit the Learner Help Center.
7

Module 4Module 3Module 2Module 1

https://support.microsoft.com/en-us/word
https://support.google.com/docs/topic/9046002?hl=en&ref_topic=1382883
https://support.microsoft.com/en-us/excel
https://support.google.com/docs/topic/9054603?hl=en&ref_topic=1382883
https://support.microsoft.com/en-us/powerpoint
https://support.google.com/docs/answer/2763168?hl=en&co=GENIE.Platform%3DDesktop
https://support.google.com/qwiklabs/answer/9133560?hl=en&ref_topic=9134804
https://www.coursera.org/learn/foundations-of-cybersecurity/resources/L1aML
https://docs.google.com/document/d/1xKmRdeTz5FqYRSQQXYCLZqh07UFq9b0EiKeGz_0vuYA/template/preview?resourcekey=0-kKCyx6qjIB0LZi7jfoM8UA#heading=h.rgwg6lxfi1mg
https://drive.google.com/file/d/1KRZcyZV5vB9CMkP0Qtcf6gBU46zkET27/view?usp=sharing
https://learner.coursera.help/hc/en-us

Get to know Python
In this reading, you will explore how programming works, how a computer processes the Python
programming language, and how Python is used in cybersecurity.

How programming works
Programming is a process that can be used to create a specific set of instructions for a computer to
execute tasks. Computer programs exist everywhere. Computers, cell phones, and many other electronic
devices are all given instructions by computer programs.

There are multiple programming languages used to create computer programs. Python is one of these.
Programming languages are converted to binary numbers, which are a series of 0s and 1s that represent
the operations that the computer's central processing unit (CPU) should perform. Each instruction
corresponds to a specific operation, such as adding two numbers or loading a value from memory.
It would be very time-consuming for humans to communicate this way. Programming languages like
Python make it easier to write code because you can use less syntax when instructing computers to
perform complex processes.

Using Python to program
Python is a general purpose programming language that can be used to solve a variety of problems. For
example, it can be used to build websites, perform data analysis, and automate tasks.
Python code must be converted through an interpreter before the computer can process it. An
interpreter is a computer program that translates Python code into runnable instructions line by line.

Python versions
There are multiple versions of Python. In this course, you are using Python 3. While using Python, it's
important to keep track of the version you're using. There are differences in the syntax of each version.
Syntax refers to the rules that determine what is correctly structured in a computing language.

Python in cybersecurity
In cybersecurity, Python is used especially for automation. Automation is the use of technology to
reduce human and manual effort to perform common and repetitive tasks. These are some specific areas
of cybersecurity in which Python might be used to automate specific tasks:

● Log analysis
● Malware analysis
● Access control list management
● Intrusion detection
● Compliance checks
● Network scanning

8

Module 4Module 3Module 2Module 1

9

Module 4Module 3Module 2Module 1

Key takeaways

Python is a programming language, or in other words, a language used to create instructions for a
computer to complete tasks. Programming languages are converted to binary numbers that a machine
can understand. It's important to be aware that there are multiple versions of Python, and they have
differences in syntax. Python is especially useful in cybersecurity for automating repetitive tasks.

10

Module 4Module 3Module 2Module 1

Python environments
You can run Python through a variety of environments. These environments include notebooks,
integrated development environments (IDEs), and the command line. This reading will introduce you to
these environments. It will focus primarily on notebooks because this is how you'll interact with Python in
this course.

Notebooks
One way to write Python code is through a notebook. In this course, you'll interact with Python through
notebooks. A notebook is an online interface for writing, storing, and running code. They also allow you to
document information about the code. Notebook content either appears in a code cell or markdown cell.

Code cells

Code cells are meant for writing and running code. A notebook provides a mechanism for running these
code cells. Often, this is a play button located within the cell. When you run the code, its output appears
after the code.

Markdown cells

Markdown cells are meant for describing the code. They allow you to format text in the markdown
language. Markdown language is used for formatting plain text in text editors and code editors. For
example, you might indicate that text should be in a certain header style.

Common notebook environments

Two common notebook environments are Jupyter Notebook and Google Colaboratory (or Google Colab).
They allow you to run several programming languages, including Python.

Integrated development environments (IDEs)
Another option for writing Python code is through an integrated development environment (IDE), or a
software application for writing code that provides editing assistance and error correction tools.
Integrated development environments include a graphical user interface (GUI) that provides
programmers with a variety of options to customize and build their programs.

Command line
The command line is another environment that allows you to run Python programs. Previously, you
learned that a command-line interface (CLI) is a text-based user interface that uses commands to
interact with the computer. By entering commands into the command line, you can access all files and
directories saved on your hard drive, including files containing Python code you want to run. You can also
use the command line to open a file editor and create a new Python file.

https://jupyter.org/about
https://colab.sandbox.google.com/

Key takeaways

Security analysts can access Python through a variety of environments, including notebooks, integrated
development environments, and the command line. In this course, you'll use notebooks, which are online
interfaces for interacting with code. Notebooks contain code cells for writing and running code as well as
markdown cells for plain text descriptions.

11

Module 4Module 3Module 2Module 1

More about data types
Previously, you explored data types in Python. A data type is a category for a particular type of data item.
You focused on string, list, float, integer, and Boolean data. These are the data types you'll work with in
this course. This reading will expand on these data types. It will also introduce three additional types.

String
In Python, string data is data consisting of an ordered sequence of characters. Characters in a string
may include letters, numbers, symbols, and spaces. These characters must be placed within quotation
marks. These are all valid strings:

● "updates needed"
● "20%"
● "5.0"
● "35"
● "**/**/**"
● ""

Note: The last item (""), which doesn't contain anything within the quotation marks, is called an empty
string.

You can use the print() function to display a string. You can explore this by running this code:

print("updates needed")

The code prints "updates needed" .
You can place strings in either double quotation marks ("") or single quotation marks (''). The following
code demonstrates that the same message prints when the string is in single quotation marks:
print('updates needed')

Note: Choosing one type of quotation marks and using it consistently makes it easier to read your code.
This course uses double quotation marks.

List
In Python, list data is a data structure that consists of a collection of data in sequential form. List
elements can be of any data type, such as strings, integers, Booleans, or even other lists. The elements of
a list are placed within square brackets, and each element is separated by a comma. The following lists
contains elements of various data types:

● [12, 36, 54, 1, 7]
● ["eraab", "arusso", "drosas"]
● [True, False, True, True]
● [15, "approved", True, 45.5, False]
● []

Note: The last item [], which doesn't contain anything within the brackets, is called an empty list.

You can also use the print() function to display a list:

print([12, 36, 54, 1, 7])

This displays a list containing the integers 12, 36, 54, 1, and 7.
12

Module 4Module 3Module 2Module 1

Integer

In Python, integer data is data consisting of a number that does not include a decimal point. These are all
examples of integer data:

● -100
● -12
● -1
● 0
● 1
● 20
● 500

Integers are not placed in quotation marks. You can use the print() function to display an integer. When
you run this code, it displays 5:

print(5)

You can also use the print() function to perform mathematical operations with integers. For example,
this code adds two integers:

print(5 + 2)

The result is 7. You can also subtract, multiply, or divide two integers.

Float
Float data is data consisting of a number with a decimal point. All of the following are examples of float
data:

● -2.2
● -1.34
● 0.0
● 0.34

Just like integer data, float data is not placed in quotation marks. In addition, you can also use the
print() function to display float data or to perform mathematical calculations with float data. You can
run the following code to review the result of this calculation:

print(1.2 + 2.8)

The output is 4.0.

Note: Dividing two integer values or two float values results in float output when you use the symbol /:

print(1/4)

print(1.0/4.0)

The output of both calculations is the float value of .25.

13

Module 4Module 3Module 2Module 1

If you want to return a whole number from a calculation, you must use the symbol // instead:

print(1//4)

print(1.0//4.0)

It will round down to the nearest whole number. In the case of print(1//4) , the output is the integer
value of 0 because using this symbol rounds down the calculation from .25 to the nearest whole number.
In the case of print(1.0//4.0) , the output is the float value of 0.0 because it maintains the float
data type of the values in the calculation while also rounding down to the nearest whole number.

Boolean
Boolean data is data that can only be one of two values: either True or False.

You should not place Boolean values in quotation marks. When you run the following code, it displays the
Boolean value of True:

print(True)

You can also return a Boolean value by comparing numbers. Because 9 is not greater than 10, this code
evaluates to False:
print(9 > 10)

Additional data types
In this course, you will work with the string, list, integer, float and Boolean data types, but there are other
data types. These additional data types include tuple data, dictionary data, and set data.

Tuple
Tuple data is a data structure that consists of a collection of data that cannot be changed. Like lists,
tuples can contain elements of varying data types.

A difference between tuple data and list data is that it is possible to change the elements in a list, but it is
not possible to change the elements in a tuple. This could be useful in a cybersecurity context. For
example, if software identifiers are stored in a tuple to ensure that they will not be altered, this can
provide assurance that an access control list will only block the intended software.

The syntax of a tuple is also different from the syntax of a list. A tuple is placed in parentheses rather than
brackets. These are all examples of the tuple data type:

● ("wjaffrey", "arutley", "dkot")

● (46, 2, 13, 2, 8, 0, 0)

● (True, False, True, True)

● ("wjaffrey", 13, True)

Pro tip: Tuples are more memory efficient than lists, so they are useful when you are working with a large
quantity of data.

14

Module 4Module 3Module 2Module 1

15

Module 4Module 3Module 2Module 1

Dictionary
Dictionary data is data that consists of one or more key-value pairs. Each key is mapped to a value. A
colon (:) is placed between the key and value. Commas separate key-value pairs from other key-value
pairs, and the dictionary is placed within curly brackets ({}).

Dictionaries are useful when you want to store and retrieve data in a predictable way. For example, the
following dictionary maps a building name to a number. The building name is the value, and the number is
the key. A colon is placed after the key.
{ 1: "East",
 2: "West",
 3: "North",
 4: "South" }

Set
In Python, set data is data that consists of an unordered collection of unique values. This means no two
values in a set can be the same.

Elements in a set are always placed within curly brackets and are separated by a comma. These elements
can be of any data type. This example of a set contains strings of usernames:

{"jlanksy", "drosas", "nmason"}

Key takeaways
It's important for security analysts who program in Python to be familiar with various Python data types.
The data types that you will work with in this course are string, list, integer, float and Boolean. Additional
data types include tuple, dictionary, and set. Each data type has its own purpose and own syntax.

Assign and reassign variables in Python
Previously, you've explored variables and how to assign and reassign them in Python. In this reading, you'll
expand your understanding of these topics. You’ll also learn about the general practice of naming
variables so that you can avoid syntax errors and improve code readability.

What are variables?
In a programming language, a variable is a container that stores data. It's a named storage location in a
computer's memory that can hold a value. It stores the data in a particular data type, such as integer,
string, or Boolean. The value that is stored in a variable can change.

You can think of variables as boxes with labels on them. Even when you change the contents of a box, the
label on the box itself remains the same. Similarly, when you change the value stored in a variable, the
name of the variable remains the same.

Security analysts working in Python will use a variety of variables. Some examples include variables for
login attempts, allow lists, and addresses.

Working with variables
In Python, it's important to know both how to assign variables and how to reassign them.

Assigning and reassigning variables

If you want to create a variable called username and assign it a value of "nzhao" , place the variable to
the left of the equals sign and its value to the right:
Assign 'username'
username = "nzhao"
If you later reset this username to "zhao2" , you still refer to that variable container as username .
Reassign 'username'
username = "zhao2"
Although the contents have changed from "nzhao" to "zhao2" , the variable username remains the
same.
Note: You must place "nzhao" and "zhao2" in quotation marks because they're strings. Python
automatically assigns a variable its data type when it runs. For example, when the username variable
contains the string "nzhao" , it’s assigned a string data type.

Assigning variables to variables

Using a similar process, you can also assign variables to other variables. In the following example, the
variable username is assigned to a new variable old_username :
Assign a variable to another variable
username = "nzhao"
old_username = username
Because username contains the string value of "nzhao" and old_username contains the value of
username, old_username now contains a value of "nzhao" .

16

Module 4Module 3Module 2Module 1

Putting it together
The following code demonstrates how a username can be updated. The username variable is assigned
an initial value, which is then stored in a second variable called old_username . After this, the username
variable is reassigned a new value. You can run this code to get a message about the previous username
and the current username:
username = "nzhao"
old_username = username
username = "zhao2"
print("Previous username:", old_username)
print("Current username:", username)

Best practices for naming variables
You can name a variable almost anything you want, but there are a few guidelines you should follow to
ensure correct syntax and prevent errors:

● Use only letters, numbers, and underscores in variable names. Valid examples: date_3 ,
username , interval2

● Start a variable name with a letter or underscore. Do not start it with a number. Valid examples:
time, _login

● Remember that variable names in Python are case-sensitive. These are all different variables:
time, Time, TIME, timE.

● Don't use Python’s built-in keywords or functions for variable names. For example, variables
shouldn't be named True, False, or if.

Additionally, you should follow these stylistic guidelines to make your code easier for you and other
security analysts to read and understand:
● Separate two or more words with underscores.

Valid examples: login_attempts , invalid_user , status_update
● Avoid variables with similar names. These variables could be easily confused with one another:

start_time , starting_time , time_starting .
● Avoid unnecessarily long names for variables. For instance, don't give variables names like

variable_that_equals_3 .
● Names should describe the data and not be random words.

Valid examples: num_login_attempts , device_id , invalid_usernames
Note: Using underscores to separate multiple words in variables is recommended, but another
convention that you might encounter is capitalizing the first letter of each word except the first word.
Example: loginAttempt

Key takeaways
It's important for security analysts to have a fundamental understanding of variables. Variables are
containers of data. They are assigned values and can also be reassigned other values or variables. It's
helpful to remember the best practices for naming variables in order to create more functional, readable
code.

17

Module 4Module 3Module 2Module 1

More on conditionals in Python
Previously, you explored conditional statements and how they’re useful in automating tasks in Python. So
far, you’ve focused on the if and else keywords. In this reading, you’ll review these and learn another
keyword, elif. You’ll also learn how you can apply the and, or, and not operators to your conditions.

How conditional statements work
A conditional statement is a statement that evaluates code to determine whether it meets a specific set
of conditions. When a condition is met, it evaluates to a Boolean value of True and performs specified
actions. When the condition isn’t met, it evaluates a Boolean value of False and doesn’t perform the
specified actions.

In conditional statements, the condition is often based on a comparison of two values. This table
summarizes common comparison operators used to compare numerical values.

18

Module 4Module 3Module 2Module 1

operator use

> greater than

< less than

>= greater than or equal to

<= less than or equal to

== equal to

!= not equal to

Note: The equal to (==) and not equal to (!=) operators are also commonly used to compare string data.

if statements
The keyword if starts a conditional statement. It’s a necessary component of any conditional statement.
In the following example, if begins a statement that tells Python to print an "OK" message when the
HTTP response status code equals 200:
if status == 200:
 print("OK")
This code consists of a header and a body.

The header of an if statement

The first line of this code is the header. In the header of an if statement, the keyword if is followed by
the condition. Here, the condition is that the status variable is equal to a value of 200. The condition can
be placed in parentheses:
if (status == 200):
 print("OK")

19

Module 4Module 3Module 2Module 1

In cases like this one, placing parentheses around conditions in Python is optional. You might want to
include them if it helps you with code readability. However, this condition will be processed the same way
if written without parentheses.
In other situations, because Python evaluates the conditions in parentheses first, parentheses can affect
how Python processes conditions. You will read more about one of these in the section of this reading on
not.
Note: You must always place a colon (:) at the end of the header. Without this syntax, the code will
produce an error.

The body of an if statement
After the header of an if statement comes the body of the if statement. This tells Python what action or
actions to perform when the condition evaluates to True. In this example, there is just one action,
printing "OK" to the screen. In other cases, there might be more lines of code with additional actions.
Note: For the body of the if statement to execute as intended, it must be indented further than the
header. Additionally, if there are multiple lines of code within the body, they must all be indented
consistently.

Continuing conditionals with else and elif
In the previous example, if the HTTP status response code was not equal to 200, the condition would
evaluate to False and Python would continue with the rest of the program. However, it’s also possible to
specify alternative actions with else and elif.

else statements

The keyword else precedes a code section that only evaluates when all conditions that precede it within
the conditional statement evaluate to False.
In the following example, when the HTTP response status code is not equal to 200, it prints an alternative
message of "check other status" :

if status == 200:
 print("OK")
else:
 print("check other status")

Note: Like with if, a colon (:) is required after else, and the body that follows the else header is
indented.

elif statements

In some cases, you might have multiple alternative actions that depend on new conditions. In that case,
you can use elif. The elif keyword precedes a condition that is only evaluated when previous
conditions evaluate to False. Unlike with else, there can be multiple elif statements following if.
For example, you might want to print one message if the HTTP response status code is 200, one message
if it is 400, and one if it is 500. The following code demonstrates how you can use elif for this:

20

Module 4Module 3Module 2Module 1

if status == 200:
 print("OK")
elif status == 400:
 print("Bad Request")
elif status == 500:
 print("Internal Server Error")

Python will first check if the value of status is 200, and if this evaluates to False, it will go onto the first
elif statement. There, it will check whether the value of status is 400. If that evaluates to True, it will
print "Bad Request" , but if it evaluates to False, it will go on to the next elif statement.
If you want the code to print another message when all conditions evaluate to False, then you can
incorporate else after the last elif. In this example, if it reaches the else statement, it prints a
message to check the status:

if status == 200:
 print("OK")
elif status == 400:
 print("Bad Request")
elif status == 500:
 print("Internal Server Error")
else:
 print("check other status")

Just like with if and else, it’s important to place a colon (:) after the elif header and indent the code
that follows this header.
Note: Python processes multiple elif statements differently than multiple if statements. When it
reaches an elif statement that evaluates to True, it won’t check the following elif statements. On the
other hand, Python will run all if statements.

Logical operators for multiple conditions
In some cases, you might want Python to perform an action based on a more complex condition. You
might require two conditions to evaluate to True. Or, you might require only one of two conditions to
evaluate to True. Or, you might want Python to perform an action when a condition evaluates to False.
The operators and, or, and not can be used in these cases.

and

The and operator requires both conditions on either side of the operator to evaluate to True. For
example, all HTTP status response codes between 200 and 226 relate to successful responses. You can
use and to join a condition of being greater than or equal to 200 with another condition of being less
than or equal to 226:

if status >= 200 and status <= 226:
 print("successful response")
When both conditions are True, then the "successful response" message will print.

21

Module 4Module 3Module 2Module 1

or

The or operator requires only one of the conditions on either side of the operator to evaluate to True.
For example, both a status code of 100 and a status code of 102 are informational responses. Using or,
you could ask Python to print an "informational response" message when the code is either 100
or 102:

if status == 100 or status == 102:
 print("informational response")

Only one of these conditions needs to be met for Python to print the message.

not

The not operator negates a given condition so that it evaluates to False if the condition is True and to
True if it is False. For example, if you want to indicate that Python should check the status code when
it’s something outside of the successful range, you can use not:

if not(status >= 200 and status <= 226):
 print("check status")

Python first checks whether the value of status is greater than or equal to 200 and less than or equal to
226, and then because of the operator not, it inverts this. This means it will print the message if status
is less than 200 or greater than 226.
Note: In this case, the parentheses are necessary for the code to apply not to both conditions. Python
will evaluate the conditions within the parentheses first. This means it will first evaluate the conditions on
either side of the and operator and then apply not to both of them.

Key takeaways
It’s important for security analysts to be familiar with conditional statements. Conditional statements
require the if keyword. You can also use else and elif when working with conditionals to specify
additional actions to take. The logical operators and, or, and not are also useful when writing
conditionals.

22

Module 4Module 3Module 2Module 1

More on loops in Python
Previously, you explored iterative statements. An iterative statement is code that repeatedly executes a
set of instructions. Depending on the criteria, iterative statements execute zero or more times. We
iterated through code using both for loops and while loops. In this reading, you’ll recap the syntax of
loops. Then, you'll learn how to use the break and continue keywords to control the execution of loops.

for loops
If you need to iterate through a specified sequence, you should use a for loop.

The following for loop iterates through a sequence of usernames. You can run it to observe the output:

for i in ["elarson", "bmoreno", "tshah", "sgilmore"]:

 print(i)

The first line of this code is the loop header. In the loop header, the keyword for signals the beginning of
a for loop. Directly after for, the loop variable appears. The loop variable is a variable that is used to
control the iterations of a loop. In for loops, the loop variable is part of the header. In this example, the
loop variable is i.

The rest of the loop header indicates the sequence to iterate through. The in operator appears before
the sequence to tell Python to run the loop for every item in the sequence. In this example, the sequence
is the list of usernames. The loop header must end with a colon (:).

The second line of this example for loop is the loop body. The body of the for loop might consist of
multiple lines of code. In the body, you indicate what the loop should do with each iteration. In this case,
it's to print(i) , or in other words, to display the current value of the loop variable during that iteration
of the loop. For Python to execute the code properly, the loop body must be indented further than the
loop header.

Note: When used in a for loop, the in operator precedes the sequence that the for loop will iterate
through. When used in a conditional statement, the in operator is used to evaluate whether an object is
part of a sequence. The example if "elarson" in ["tshah", "bmoreno", "elarson"]
evaluates to True because "elarson" is part of the sequence following in.

Looping through a list

Using for loops in Python allows you to easily iterate through lists, such as a list of computer assets. In
the following for loop, asset is the loop variable and another variable, computer_assets , is the
sequence. The computer_assets variable stores a list. This means that on the first iteration the value of
asset will be the first element in that list, and on the second iteration, the value of asset will be the
second element in that list. You can run the code to observe what it outputs:

computer_assets = ["laptop1", "desktop20", "smartphone03"]
for asset in computer_assets:
 print(asset)

23

Module 4Module 3Module 2Module 1

Note: It is also possible to loop through a string. This will return every character one by one.
You can observe this by running the following code block that iterates through the string "security" :

string = "security"
for character in string:
 print(character)

Using range()

Another way to iterate through a for loop is based on a sequence of numbers, and this can be done with
range() . The range() function generates a sequence of numbers. It accepts inputs for the start point,
stop point, and increment in parentheses. For example, the following code indicates to start the sequence
of numbers at 0, stop at 5, and increment each time by 1:

range(0, 5, 1)

Note: The start point is inclusive, meaning that 0 will be included in the sequence of numbers, but the
stop point is exclusive, meaning that 5 will be excluded from the sequence. It will conclude one integer
before the stopping point.

When you run this code, you can observe how 5 is excluded from the sequence:

for i in range(0, 5, 1):
 print(i)

You should be aware that it's always necessary to include the stop point, but if the start point is the
default value of 0 and the increment is the default value of 1, they don't have to be specified in the code.
If you run this code, you will get the same results:

for i in range(5):

 print(i)

Note: If the start point is anything other than 0 or the increment is anything other than 1, they should be
specified.

while loops
If you want a loop to iterate based on a condition, you should use a while loop. As long as the condition
is True, the loop continues, but when it evaluates to False, the while loop exits. The following while
loop continues as long as the condition that i < 5 is True:

i = 1
while i < 5:
 print(i)
 i = i + 1

24

Module 4Module 3Module 2Module 1

In this while loop, the loop header is the line while i < 5: . Unlike with for loops, the value of a loop
variable used to control the iterations is not assigned within the loop header in a while loop. Instead, it is
assigned outside of the loop. In this example, i is assigned a starting value of 1 in a line preceding the
loop.
The keyword while signals the beginning of a while loop. After this, the loop header indicates the
condition that determines when the loop terminates. This condition uses the same comparison operators
as conditional statements. Like in a for loop, the header of a while loop must end with a colon (:).
The body of a while loop indicates the actions to take with each iteration. In this example, it is to display
the value of i and to increment the value of i by 1. In order for the value of i to change with each
iteration, it's necessary to indicate this in the body of the while loop. In this example, the loop iterates
four times until it reaches a value of 5.

Integers in the loop condition
Often, as just demonstrated, the loop condition is based on integer values. For example, you might want
to allow a user to log in as long as they've logged in less than five times. Then, your loop variable,
login_attempts, can be initialized to 0, incremented by 1 in the loop, and the loop condition can specify to
iterate only when the variable is less than 5. You can run the code below and review the count of each
login attempt:

login_attempts = 0
while login_attempts < 5:
 print("Login attempts:", login_attempts)
 login_attempts = login_attempts + 1

The value of login_attempts went from 0 to 4 before the loop condition evaluated to False.
Therefore, the values of 0 through 4 print, and the value 5 does not print.

Boolean values in the loop condition
Conditions in while loops can also depend on other data types, including comparisons of Boolean data.
In Boolean data comparisons, your loop condition can check whether a loop variable equals a value like
True or False. The loop iterates an indeterminate number of times until the Boolean condition is no
longer True.
In the example below, a Boolean value is used to exit a loop when a user has made five login attempts.
A variable called count keeps track of each login attempt and changes the login_status variable to
False when the count equals 4. (Incrementing count from 0 to 4 represents five login attempts.)
Because the while condition only iterates when login_status is True, it will exit the loop. You can run
this to explore this output:

count = 0
login_status = True
while login_status == True:
 print("Try again.")
 count = count + 1
 if count == 4:
 login_status = False

25

Module 4Module 3Module 2Module 1

The code prints a message to try again four times, but exits the loop once login_status is set to
False.

Managing loops
You can use the break and continue keywords to further control your loop iterations. Both are
incorporated into a conditional statement within the body of the loop. They can be inserted to execute
when the condition in an if statement is True. The break keyword is used to break out of a loop. The
continue keyword is used to skip an iteration and continue with the next one.

break

When you want to exit a for or while loop based on a particular condition in an if statement being
True, you can write a conditional statement in the body of the loop and write the keyword break in the
body of the conditional.
The following example demonstrates this. The conditional statement with break instructs Python to exit
the for loop if the value of the loop variable asset is equal to "desktop20" . On the second iteration,
this condition evaluates to True. You can run this code to observe this in the output:

computer_assets = ["laptop1", "desktop20", "smartphone03"]
for asset in computer_assets:
 if asset == "desktop20":
 break
 print(asset)

As expected, the values of "desktop20" and “smartphone03" don't print because the loop breaks on
the second iteration.

continue

When you want to skip an iteration based on a certain condition in an if statement being True, you can
add the keyword continue in the body of a conditional statement within the loop. In this example,
continue will execute when the loop variable of asset is equal to "desktop20" . You can run this code
to observe how this output differs from the previous example with break:

computer_assets = ["laptop1", "desktop20", "smartphone03"]
for asset in computer_assets:
 if asset == "desktop20":
 continue
 print(asset)

The value "desktop20" in the second iteration doesn't print. However, in this case, the loop continues to
the next iteration, and "smartphone03" is printed.

26

Module 4Module 3Module 2Module 1

Infinite loops

If you create a loop that doesn't exit, this is called an infinite loop. In these cases, you should press
CTRL-C or CTRL-Z on your keyboard to stop the infinite loop. You might need to do this when running a
service that constantly processes data, such as a web server.

Key takeaways
Security analysts need to be familiar with iterative statements. They can use for loops to perform tasks
that involve iterating through lists a predetermined number of times. They can also use while loops to
perform tasks based on certain conditions evaluating to True. The break and continue keywords are
used in iterative statements to control the flow of loops based on additional conditions.

Course 7 - module 2

Python functions in cybersecurity
Previously, you explored how to define and call your own functions. In this reading, you’ll revisit what you
learned about functions and examine how functions can improve efficiency in a cybersecurity setting.

Functions in cybersecurity
A function is a section of code that can be reused in a program. Functions are important in Python
because they allow you to automate repetitive parts of your code. In cybersecurity, you will likely adopt
some processes that you will often repeat.

When working with security logs, you will often encounter tasks that need to be repeated. For example, if
you were responsible for finding malicious login activity based on failed login attempts, you might have to
repeat the process for multiple logs.

To work around that, you could define a function that takes a log as its input and returns all potentially
malicious logins. It would be easy to apply this function to different logs.

Defining a function
In Python, you'll work with built-in functions and user-defined functions. Built-in functions are functions
that exist within Python and can be called directly. The print() function is an example of a built-in
function.

User-defined functions are functions that programmers design for their specific needs. To define a
function, you need to include a function header and the body of your function.

Function header
The function header is what tells Python that you are starting to define a function. For example, if you
want to define a function that displays an "investigate activity" message, you can include this
function header:
def display_investigation_message():

The def keyword is placed before a function name to define a function. In this case, the name of that
function is display_investigation_message .

The parentheses that follow the name of the function and the colon (:) at the end of the function header
are also essential parts of the syntax.

Pro tip: When naming a function, give it a name that indicates what it does. This will make it easier to
remember when calling it later.

27

Module 4Module 3Module 2Module 1

Function body

The body of the function is an indented block of code after the function header that defines what the
function does. The indentation is very important when writing a function because it separates the definition
of a function from the rest of the code.

To add a body to your definition of the display_investigation_message() function, add an indented
line with the print() function. Your function definition becomes the following:

def display_investigation_message():

 print("investigate activity")

Calling a function
After defining a function, you can use it as many times as needed in your code. Using a function after defining
it is referred to as calling a function. To call a function, write its name followed by parentheses. So, for the
function you previously defined, you can use the following code to call it:

display_investigation_message()

Although you'll use functions in more complex ways as you expand your understanding, the following code
provides an introduction to how the display_investigation_message() function might be part of a
larger section of code. You can run it and analyze its output:

def display_investigation_message():

 print("investigate activity")

application_status = "potential concern"

email_status = "okay"

if application_status == "potential concern":

 print("application_log:")

 display_investigation_message()

if email_status == "potential concern":

 print("email log:")

 display_investigation_message()

The display_investigation_message() function is used twice within the code. It will print
"investigate activity" messages about two different logs when the specified conditions evaluate to
True. In this example, only the first conditional statement evaluates to True, so the message prints once.

This code calls the function from within conditionals, but you might call a function from a variety of locations
within the code.

28

Module 4Module 3Module 2Module 1

Note: Calling a function inside of the body of its function definition can create an infinite loop. This happens
when it is not combined with logic that stops the function call when certain conditions are met. For example,
in the following function definition, after you first call func1() , it will continue to call itself and create an
infinite loop:

def func1():

 func1()

Key takeaways
Python’s functions are important when writing code. To define your own functions, you need the two essential
components of the function header and the function body. After defining a function, you can call it when
needed.

29

Module 4Module 3Module 2Module 1

Functions and variables
Previously, you focused on working with multiple parameters and arguments in functions and returning
information from functions. In this reading, you’ll review these concepts. You'll also be introduced to a
new concept: global and local variables.

Working with variables in functions
Working with variables in functions requires an understanding of both parameters and arguments. The
terms parameters and arguments have distinct uses when referring to variables in a function.
Additionally, if you want the function to return output, you should be familiar with return statements.

Parameters
A parameter is an object that is included in a function definition for use in that function. When you define
a function, you create variables in the function header. They can then be used in the body of the function.
In this context, these variables are called parameters. For example, consider the following function:

def remaining_login_attempts(maximum_attempts, total_attempts):

 print(maximum_attempts - total_attempts)

This function takes in two variables, maximum_attempts and total_attempts and uses them to
perform a calculation. In this example, maximum_attempts and total_attempts are parameters.

Arguments

In Python, an argument is the data brought into a function when it is called. When calling
remaining_login_attempts in the following example, the integers 3 and 2 are considered
arguments:

remaining_login_attempts(3, 2)

These integers pass into the function through the parameters that were identified when defining the
function. In this case, those parameters would be maximum_attempts and total_attempts . 3 is in
the first position, so it passes into maximum_attempts . Similarly, 2 is in the second position and passes
into total_attempts .

Return statements
When defining functions in Python, you use return statements if you want the function to return output.
The return keyword is used to return information from a function.

The return keyword appears in front of the information that you want to return. In the following
example, it is before the calculation of how many login attempts remain:

def remaining_login_attempts(maximum_attempts, total_attempts):

 return maximum_attempts - total_attempts

30

Module 4Module 3Module 2Module 1

Note: The return keyword is not a function, so you should not place parentheses after it.

Return statements are useful when you want to store what a function returns inside of a variable to use
elsewhere in the code. For example, you might use this variable for calculations or within conditional
statements. In the following example, the information returned from the call to
remaining_login_attempts is stored in a variable called remaining_attempts . Then, this variable is
used in a conditional that prints a "Your account is locked" message when remaining_attempts is
less than or equal to 0. You can run this code to explore its output:

def remaining_login_attempts(maximum_attempts, total_attempts):

 return maximum_attempts - total_attempts

remaining_attempts = remaining_login_attempts(3, 3)

if remaining_attempts <= 0:

 print("Your account is locked")

In this example, the message prints because the calculation in the function results in 0.

Note: When Python encounters a return statement, it executes this statement and then exits the function. If
there are lines of code that follow the return statement within the function, they will not be run. The previous
example didn't contain any lines of code after the return statement, but this might apply in other functions,
such as one containing a conditional statement.

Global and local variables
To better understand how functions interact with variables, you should know the difference between global
and local variables.

When defining and calling functions, you're working with local variables, which are different from the variables
you define outside the scope of a function.

Global variables
A global variable is a variable that is available through the entire program. Global variables are assigned
outside of a function definition. Whenever that variable is called, whether inside or outside a function, it will
return the value it is assigned.

For example, you might assign the following variable at the beginning of your code:

device_id = "7ad2130bd"

Throughout the rest of your code, you will be able to access and modify the device_id variable in conditionals,
loops, functions, and other syntax.

31

Module 4Module 3Module 2Module 1

Local variables

A local variable is a variable assigned within a function. These variables cannot be called or accessed outside
of the body of a function. Local variables include parameters as well as other variables assigned within a
function definition.

In the following function definition, total_string and name are local variables:

def greet_employee(name):

 total_string = “Welcome” + name

 return total_string

The variable total_string is a local variable because it's assigned inside of the function. The parameter
name is a local variable because it is also created when the function is defined.

Whenever you call a function, Python creates these variables temporarily while the function is running and
deletes them from memory after the function stops running.

This means that if you call the greet_employee() function with an argument and then use the total_string
variable outside of this function, you'll get an error.

Best practices for global and local variables

When working with variables and functions, it is very important to make sure that you only use a certain
variable name once, even if one is defined globally and the other is defined locally.

When using global variables inside functions, functions can access the values of a global variable. You can run
the following example to explore this:

username = "elarson"

def identify_user():

 print(username)

identify_user()

The code block returns "elarson" even though that name isn't defined locally. The function accesses the
global variable. If you wanted the identify_user() function to accommodate other usernames, you would
have to reassign the global username variable outside of the function. This isn't good practice. A better way to
pass different values into a function is to use a parameter instead of a global variable.

There's something else to consider too. If you reuse the name of a global variable within a function, it will
create a new local variable with that name. In other words, there will be both a global variable with that name
and a local variable with that name, and they'll have different values. You can consider the following code
block:

32

Module 4Module 3Module 2Module 1

username = "elarson"

print("1:" + username)

def greet():

 username = "bmoreno"

 print("2:" + username)

greet()

print("3:" + username)

The first print statement occurs before the function, and Python returns the value of the global username
variable, "elarson" . The second print statement is within the function, and it returns the value of the local
username variable, which is "bmoreno" . But this doesn't change the value of the global variable, and when
username is printed a third time after the function call, it's still "elarson" .

Due to this complexity, it's best to avoid combining global and local variables within functions.

Key takeaways
Working with variables in functions requires understanding various concepts. A parameter is an object that is
included in a function definition for use in that function, an argument is the data brought into a function when
it is called, and the return keyword is used to return information from a function. Additionally, global
variables are variables accessible throughout the program, and local variables are parameters and variables
assigned within a function that aren't usable outside of a function. It's important to make sure your variables
all have distinct names, even if one is a local variable and the other is a global variable.

33

Module 4Module 3Module 2Module 1

Work with built-in functions
Previously, you explored built-in functions in Python, including print() , type() , max(), and
sorted() . Built-in functions are functions that exist within Python and can be called directly. In this
reading, you’ll explore these further and also learn about the min() function. In addition, you'll review
how to pass the output of one function into another function.

print()
The print() function outputs a specified object to the screen. The print() function is one of the most
commonly used functions in Python because it allows you to output any detail from your code.

To use the print() function, you pass the object you want to print as an argument to the function. The
print() function takes in any number of arguments, separated by a comma, and prints all of them. For
example, you can run the following code that prints a string, a variable, another string, and an integer
together:

month = "September"

print("Investigate failed login attempts during", month, "if more than", 100)

type()
The type() function returns the data type of its argument. The type() function helps you keep track of
the data types of variables to avoid errors throughout your code.

To use it, you pass the object as an argument, and it returns its data type. It only accepts one argument.
For example, you could specify type("security") or type(7).

Passing one function into another
When working with functions, you often need to pass them through print() if you want to output the
data type to the screen. This is the case when using a function like type() . Consider the following code:

print(type("This is a string"))

It displays str, which means that the argument passed to the type() function is a string. This happens
because the type() function is processed first and its output is passed as an argument to the print()
function.

max() and min()
The max() function returns the largest numeric input passed into it. The min() function returns the
smallest numeric input passed into it.

The max() and min() functions accept arguments of either multiple numeric values or of an iterable like
a list, and they return the largest or smallest value respectively.

34

Module 4Module 3Module 2Module 1

35

Module 4Module 3Module 2Module 1

In a cybersecurity context, you could use these functions to identify the longest or shortest session that a
user logged in for. If a specific user logged in seven times during a week, and you stored their access times in
minutes in a list, you can use the max() and min() functions to find and print their longest and shortest
sessions:

time_list = [12, 2, 32, 19, 57, 22, 14]

print(min(time_list))

print(max(time_list))

sorted()
The sorted() function sorts the components of a list. The sorted() function also works on any iterable,
like a string, and returns the sorted elements in a list. By default, it sorts them in ascending order. When given
an iterable that contains numbers, it sorts them from smallest to largest; this includes iterables that contain
numeric data as well as iterables that contain string data beginning with numbers. An iterable that contains
strings that begin with alphabetic characters will be sorted alphabetically.

The sorted() function takes an iterable, like a list or a string, as an input. So, for example, you can use the
following code to sort the list of login sessions from shortest to longest:

time_list = [12, 2, 32, 19, 57, 22, 14]

print(sorted(time_list))

This displays the sorted list.

The sorted() function does not change the iterable that it sorts. The following code illustrates this:

time_list = [12, 2, 32, 19, 57, 22, 14]

print(sorted(time_list))

print(time_list)

The first print() function displays the sorted list. However, the second print() function, which does not
include the sorted() function, displays the list as assigned to time_list in the first line of code.

One more important detail about the sorted() function is that it cannot take lists or strings that have
elements of more than one data type. For example, you can’t use the list [1, 2, "hello"] .

36

Module 4Module 3Module 2Module 1

Key takeaways
Built-in functions are powerful tools in Python that allow you to perform tasks with one simple command. The
print() function prints its arguments to the screen, the type() function returns the data type of its
argument, the min() and max() functions return the smallest and largest values of an iterable respectively,
and sorted() organizes its argument.

Resources for more information
These were just a few of Python's built-in functions. You can continue learning about others on your own:

● The Python Standard Library documentation: A list of Python’s built-in functions and information on
how to use them

https://docs.python.org/3/library/functions.html

Import modules and libraries in Python
Previously, you explored libraries and modules. You learned that a module is a Python file that contains
additional functions, variables, classes, and any kind of runnable code. You also learned that a library is a
collection of modules that provide code users can access in their programs. You were introduced to a few
modules in the Python Standard Library and a couple of external libraries. In this reading, you'll learn how
to import a module that exists in the Python Standard Library and use its functions. You'll also expand your
understanding of external libraries.

The Python Standard Library
The Python Standard Library is an extensive collection of Python code that often comes packaged with
Python. It includes a variety of modules, each with pre-built code centered around a particular type of
task.

For example, you were previously introduced to the the following modules in the Python Standard Library:

● The re module, which provides functions used for searching for patterns in log files
● The csv module, which provides functions used when working with .csv files
● The glob and os modules, which provide functions used when interacting with the command line
● The time and datetime modules, which provide functions used when working with timestamps

Another Python Standard Library module is statistics . The statistics module includes functions
used when calculating statistics related to numeric data. For example, mean() is a function in the
statistics module that takes numeric data as input and calculates its mean (or average). Additionally,
median() is a function in the statistics module that takes numeric data as input and calculates its
median (or middle value).

How to import modules from the Python Standard Library
To access modules from the Python Standard Library, you need to import them. You can choose to either
import a full module or to only import specific functions from a module.

Importing an entire module

To import an entire Python Standard Library module, you use the import keyword. The import keyword
searches for a module or library in a system and adds it to the local Python environment. After import ,
specify the name of the module to import. For example, you can specify import statistics to import
the statistics module. This will import all the functions inside of the statistics module for use
later in your code.

As an example, you might want to use the mean() function from the statistics module to calculate
the average number of failed login attempts per month for a particular user. In the following code block,
the total number of failed login attempts for each of the twelve months is stored in a list called
monthly_failed_attempts . Run this code and analyze how mean() can be used to calculate the
average of these monthly failed login totals and store it in mean_failed_attempts :

37

Module 4Module 3Module 2Module 1

import statistics

monthly_failed_attempts = [20, 17, 178, 33, 15, 21, 19, 29, 32, 15, 25, 19]

mean_failed_attempts = statistics.mean(monthly_failed_attempts)

print("mean:", mean_failed_attempts)

The output returns a mean of 35.25. You might notice the outlying value of 178 and want to find the
middle value as well. To do this through the median() function, you can use the following code:

import statistics

monthly_failed_attempts = [20, 17, 178, 33, 15, 21, 19, 29, 32, 15, 25, 19]

median_failed_attempts = statistics.median(monthly_failed_attempts)

print("median:", median_failed_attempts)

This gives you the value of 20.5, which might also be useful for analyzing the user's failed login attempt
statistics.

Note: When importing an entire Python Standard Library module, you need to identify the name of the
module with the function when you call it. You can do this by placing the module name followed by a
period (.) before the function name. For example, the previous code blocks use statistics.mean()
and statistics.median() to call those functions.

Importing specific functions from a module
To import a specific function from the Python Standard Library, you can use the from keyword. For
example, if you want to import just the median() function from the statistics module, you can write
from statistics import median.

To import multiple functions from a module, you can separate the functions you want to import with a
comma. For instance, from statistics import mean, median imports both the mean() and the
median() functions from the statistics module.

An important detail to note is that if you import specific functions from a module, you no longer have to
specify the name of the module before those functions. You can examine this in the following code,
which specifically imports only the median() and the mean() functions from the statistics module
and performs the same calculations as the previous examples:

38

Module 4Module 3Module 2Module 1

from statistics import mean, median

monthly_failed_attempts = [20, 17, 178, 33, 15, 21, 19, 29, 32, 15, 25, 19]

mean_failed_attempts = mean(monthly_failed_attempts)

print("mean:", mean_failed_attempts)

median_failed_attempts = median(monthly_failed_attempts)

print("median:", median_failed_attempts)

It is no longer necessary to specify statistics.mean() or statistics.median() and instead the
code incorporates these functions as mean() and median() .

External libraries
In addition to the Python Standard Library, you can also download external libraries and incorporate them
into your Python code. For example, previously you were introduced to Beautiful Soup (bs4) for parsing
HTML files and NumPy (numpy) for arrays and mathematical computations. Before using them in a
Jupyter Notebook or a Google Colab environment, you need to install them first.

To install a library, such as numpy, in either environment, you can run the following line prior to importing
the library:

%pip install numpy

This installs the library so you can use it in your notebook.

After a library is installed, you can import it directly into Python using the import keyword in a similar
way to how you used it to import modules from the Python Standard Library. For example, after the
numpy install, you can use this code to import it:

import numpy

Key takeaways
The Python Standard Library contains many modules that you can import, including re, csv, os, glob,
time, datetime , and statistics . To import these modules, you must use the import keyword.
Syntax varies depending on whether or not you want to import the entire module or just specific
functions from it. External libraries can also be imported into Python, but they need to be installed first.

39

Module 4Module 3Module 2Module 1

40

Module 4Module 3Module 2Module 1

Ensure proper syntax and readability in Python
Previously, you were introduced to the PEP 8 style guide and its stylistic guidelines for programmers
working in Python. You also learned about how adding comments and using correct indentation makes
your code more readable. Additionally, correct indentation ensures your code is executed properly. This
reading explores these ideas further and also focuses on common items to check in the syntax of your
code to ensure it runs.

Comments
A comment is a note programmers make about the intention behind their code. Comments make it
easier for you and other programmers to read and understand your code.

It’s important to start your code with a comment that explains what the program does. Then, throughout
the code, you should add additional comments about your intentions behind specific sections.

When adding comments, you can add both single-line comments and multi-line comments.

Single-line comments
Single-line comments in Python begin with the (#) symbol. According to the PEP 8 style guide, it’s best
practice to keep all lines in Python under 79 characters to maintain readability, and this includes
comments.

Single-line comments are often used throughout your program to explain the intention behind specific
sections of code. For example, this might be when you're explaining simpler components of your
program, such as the following for loop:

Print elements of 'computer_assets' list
computer_assets = ["laptop1", "desktop20", "smartphone03"]
for asset in computer_assets:
 print(asset)

Note: Comments are important when writing more complex code, like functions, or multiple loops or
conditional statements. However, they're optional when writing less complex code like reassigning a
variable.

Multi-line comments
Multi-line comments are used when you need more than 79 characters in a single comment. For example,
this might occur when defining a function if the comment describes its inputs and their data types as well
as its output.

There are two commonly used ways of writing multi-line comments in Python. The first is by using the
hashtag (#) symbol over multiple lines:

41

Module 4Module 3Module 2Module 1

remaining_login_attempts() function takes two integer parameters,

the maximum login attempts allowed and the total attempts made,

and it returns an integer representing remaining login attempts

def remaining_login_attempts(maximum_attempts, total_attempts):

 return maximum_attempts - total_attempts

Another way of writing multi-line comments is by using documentation strings and not assigning them to
a variable. Documentation strings, also called docstrings, are strings that are written over multiple lines
and are used to document code. To create a documentation string, use triple quotation marks (""" """).

You could add the comment to the function in the previous example in this way too:

"""

remaining_login_attempts() function takes two integer parameters,

the maximum login attempts allowed and the total attempts made,

and it returns an integer representing remaining login attempts

"""

Correct indentation
Indentation is space added at the beginning of a line of code. In Python, you should indent the body of
conditional statements, iterative statements, and function definitions. Indentation is not only necessary
for Python to interpret this syntax properly, but it can also make it easier for you and other programmers
to read your code.

The PEP 8 style guide recommends that indentations should be four spaces long. For example, if you had
a conditional statement inside of a while loop, the body of the loop would be indented four spaces and
the body of the conditional would be indented four spaces beyond that. This means the conditional would
be indented eight spaces in total.

count = 0
login_status = True
while login_status == True:
 print("Try again.")
 count = count + 1
 if count == 4:
 login_status = False

42

Module 4Module 3Module 2Module 1

Maintaining correct syntax
Syntax errors involve invalid usage of the Python language. They are incredibly common with Python, so
focusing on correct syntax is essential in ensuring that your code runs. Awareness of common errors will
help you more easily fix them.

Syntax errors often occur because of mistakes with data types or in the headers of conditional or
iterative statements or of function definitions.

Data types
Correct syntax varies depending on data type:

● Place string data in quotation marks.
○ Example: username = "bmoreno"

● Do not add quotation marks around integer, float, or Boolean data types.
○ Examples: login_attempts = 5 , percentage_successful = .8 , login_status

= True
● Place lists in brackets and separate the elements of a list with commas.

○ Example: username_list = ["bmoreno", "tshah"]

Colons in headers
The header of a conditional or iterative statement or of a function definition must end with a colon. For
example, a colon appears at the end of the header in the following function definition:

def remaining_login_attempts(maximum_attempts, total_attempts):

 return maximum_attempts - total_attempts

Key takeaways
The PEP 8 style guide provides recommendations for writing code that can be easily understood and read
by other Python programmers. In order to make your intentions clear, you should incorporate comments
into your code. Depending on the length of the comment, you can follow conventions for single-line or
multi-line comments. It's also important to use correct indentation; this ensures your code will run as
intended and also makes it easier to read. Finally, you should also be aware of common syntax issues so
that you can more easily fix them.

Resources for more information
Learning to write readable code can be challenging, so make sure to review the PEP 8 style guide and
learn about additional aspects of code readability.

● PEP 8 - Style Guide for Python Code: The PEP 8 style guide contains all standards of Python code.
When reading this guide, it's helpful to use the table of contents to navigate through the concepts
you haven't learned yet.

https://peps.python.org/pep-0008/

Course 7 - module 3

Strings and the security analyst
The ability to work with strings is important in the cybersecurity profession. Previously, you were
introduced to several ways to work with strings, including functions and methods. You also learned how
to extract elements in strings using bracket notation and indices. This reading reviews these concepts
and explains more about using the .index() method. It also highlights examples of string data you
might encounter in a security setting.

String data in a security setting
As an analyst, string data is one of the most common data types you will encounter in Python. String
data is data consisting of an ordered sequence of characters. It's used to store any type of information
you don't need to manipulate mathematically (such as through division or subtraction). In a cybersecurity
context, this includes IP addresses, usernames, URLs, and employee IDs.

You'll need to work with these strings in a variety of ways. For example, you might extract certain parts of
an IP address, or you might verify whether usernames meet required criteria.

Working with indices in strings

Indices

An index is a number assigned to every element in a sequence that indicates its position. With strings,
this means each character in the string has its own index.

Indices start at 0. For example, you might be working with this string containing a device ID: "h32rb17" .
The following table indicates the index for each character in this string:

43

Module 4Module 3Module 2Module 1

character index

h 0

3 1

2 2

r 3

b 4

1 5

7 6

44

You can also use negative numbers as indices. This is based on their position relative to the last character

in the string:

Module 4Module 3Module 2Module 1

character index

h -7

3 -6

2 -5

r -4

b -3

1 -2

7 -1

Bracket notation

Bracket notation refers to the indices placed in square brackets. You can use bracket notation to extract
a part of a string. For example, the first character of the device ID might represent a certain characteristic
of the device. If you want to extract it, you can use bracket notation for this:

"h32rb17"[0]

This device ID might also be stored within a variable called device_id . You can apply the same bracket
notation to the variable:

device_id = "h32rb17"

device_id[0]

In both cases, bracket notation outputs the character h when this bracket notation is placed inside a
print() function. You can observe this by running the following code:

device_id = "h32rb17"

print("h32rb17"[0])

print(device_id[0])

You can also take a slice from a string. When you take a slice from a string, you extract more than one
character from it. It's often done in cybersecurity contexts when you’re only interested in a specific part
of a string. For example, this might be certain numbers in an IP address or certain parts of a URL.

45

In the device ID example, you might need the first three characters to determine a particular quality of
the device. To do this, you can take a slice of the string using bracket notation. You can run this line of
code to observe that it outputs "h32":

print("h32rb17"[0:3])

Note: The slice starts at the 0 index, but the second index specified after the colon is excluded. This
means the slice ends one position before index 3, which is at index 2.

String functions and methods
The str() and len() functions are useful for working with strings. You can also apply methods to
strings, including the .upper() , .lower() , and .index() methods. A method is a function that
belongs to a specific data type.

str() and len()

The str() function converts its input object into a string. As an analyst, you might use this in security
logs when working with numerical IDs that aren't going to be used with mathematical processes.
Converting an integer to a string gives you the ability to search through it and extract slices from it.

Consider the example of an employee ID 19329302 that you need to convert into a string. You can use
the following line of code to convert it into a string and store it in a variable:

string_id = str(19329302)

The second function you learned for strings is the len() function, which returns the number of elements
in an object.

As an example, if you want to verify that a certain device ID conforms to a standard of containing seven
characters, you can use the len() function and a conditional. When you run the following code, it will
print a message if "h32rb17" has seven characters:

device_id_length = len("h32rb17")

if device_id_length == 7:

 print("The device ID has 7 characters.")

.upper() and .lower()

The .upper() method returns a copy of the string with all of its characters in uppercase. For example,
you can change this department name to all uppercase by running the code "Information
Technology".upper() . It would return the string "INFORMATION TECHNOLOGY" .

Meanwhile, the .lower() method returns a copy of the string in all lowercase characters.
"Information Technology".lower() would return the string "information technology" .

Module 4Module 3Module 2Module 1

46

.index()

The .index() method finds the first occurrence of the input in a string and returns its location. For
example, this code uses the .index() method to find the first occurrence of the character "r" in the
device ID "h32rb17" :

print("h32rb17".index("r"))

The .index() method returns 3 because the first occurrence of the character "r" is at index 3.

In other cases, the input may not be found. When this happens, Python returns an error. For instance, the
code print("h32rb17".index("a")) returns an error because "a" is not in the string "h32rb17" .

Also note that if a string contains more than one instance of a character, only the first one will be
returned. For instance, the device ID "r45rt46" contains two instances of "r". You can run the
following code to explore its output:

print("r45rt46".index("r"))

The output is 0 because .index() returns only the first instance of "r", which is at index 0. The
instance of "r" at index 3 is not returned.

Finding substrings with .index()

A substring is a continuous sequence of characters within a string. For example, "llo" is a substring of
"hello" .

The .index() method can also be used to find the index of the first occurrence of a substring. It returns
the index of the first character in that substring. Consider this example that finds the first instance of the
user "tshah" in a string:

tshah_index = "tsnow, tshah, bmoreno - updated".index("tshah")

print(tshah_index)

The .index() method returns the index 7, which is where the substring "tshah" starts.

Note: When using the .index() method to search for substrings, you need to be careful. In the previous
example, you want to locate the instance of "tshah" . If you search for just "ts", Python will return 0
instead of 7 because "ts" is also a substring of "tsnow" .

Key takeaways
As a security analyst, you will work with strings in a variety of ways. First, you might need to use bracket
notation to work with string indices. Two functions you will likely use are str(), which converts an input
into a string, and len(), which finds the length of a string. You can also use string methods, functions
that only work on strings. These include .upper() , which converts all letters in a string into uppercase
letters, .lower() , which converts all letters in a string into lowercase letters, and .index() , which
returns the index of the first occurrence of its input within a string.

Module 4Module 3Module 2Module 1

47

Lists and the security analyst
Previously, you examined how to use bracket notation to access and change elements in a list and some
fundamental methods for working with lists. This reading will review these concepts with new examples,
introduce the .index() method as it applies to lists, and highlight how lists are used in a cybersecurity
context.

List data in a security setting
As a security analyst, you'll frequently work with lists in Python. List data is a data structure that consists
of a collection of data in sequential form. You can use lists to store multiple elements in a single variable. A
single list can contain multiple data types.

In a cybersecurity context, lists might be used to store usernames, IP addresses, URLs, device IDs, and
data.

Placing data within a list allows you to work with it in a variety of ways. For example, you might iterate
through a list of device IDs using a for loop to perform the same actions for all items in the list. You could
incorporate a conditional statement to only perform these actions if the device IDs meet certain
conditions.

Working with indices in lists

Indices
Like strings, you can work with lists through their indices, and indices start at 0. In a list, an index is
assigned to every element in the list.

This table contains the index for each element in the list ["elarson", "fgarcia", "tshah",
"sgilmore"] :

Module 4Module 3Module 2Module 1

element index

"elarson" 0

"fgarcia" 1

"tshah" 2

"sgilmore" 3

48

Bracket notation
Similar to strings, you can use bracket notation to extract elements or slices in a list. To extract an element
from a list, after the list or the variable that contains a list, add square brackets that contain the index of
the element. The following example extracts the element with an index of 2 from the variable
username_list and prints it. You can run this code to examine what it outputs:

username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print(username_list[2])

This example extracts the element at index 2 directly from the list:

print(["elarson", "fgarcia", "tshah", "sgilmore"][2])

Extracting a slice from a list
Just like with strings, it's also possible to use bracket notation to take a slice from a list. With lists, this
means extracting more than one element from the list.

When you extract a slice from a list, the result is another list. This extracted list is called a sublist because
it is part of the original, larger list.

To extract a sublist using bracket notation, you need to include two indices. You can run the following
code that takes a slice from a list and explore the sublist it returns:
username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print(username_list[0:2])

The code returns a sublist of ["elarson", "fgarcia"] . This is because the element at index 0,
"elarson" , is included in the slice, but the element at index 2, "tshah" , is excluded. The slice ends one
element before this index.

Changing the elements in a list
Unlike strings, you can also use bracket notation to change elements in a list. This is because a string is
immutable and cannot be changed after it is created and assigned a value, but lists are not immutable.

To change a list element, use similar syntax as you would use when reassigning a variable, but place the
specific element to change in bracket notation after the variable name. For example, the following code
changes element at index 1 of the username_list variable to "bmoreno".

username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print("Before changing an element:", username_list)

username_list[1] = "bmoreno"

print("After changing an element:", username_list)

This code has updated the element at index 1 from "fgarcia" to "bmoreno" .

Module 4Module 3Module 2Module 1

49

List methods
List methods are functions that are specific to the list data type. These include the .insert() ,
.remove() , .append() and .index() .

.insert()

The .insert() method adds an element in a specific position inside a list. It has two parameters. The
first is the index where you will insert the new element, and the second is the element you want to insert.

You can run the following code to explore how this method can be used to insert a new username into a
username list:

username_list = ["elarson", "fgarcia", "tshah", "sgilmore"]

print("Before inserting an element:", username_list)

username_list.insert(2,"wjaffrey")

print("After inserting an element:", username_list)

Because the first parameter is 2 and the second parameter is "wjaffrey" , "wjaffrey" is inserted at
index 2, which is the third position. The other list elements are shifted one position in the list. For example,
"tshah" was originally located at index 2 and now is located at index 3.

.remove()
The .remove() method removes the first occurrence of a specific element in a list. It has only one
parameter, the element you want to remove.

The following code removes "elarson" from the username_list :

username_list = ["elarson", "bmoreno", "wjaffrey", "tshah", "sgilmore"]

print("Before removing an element:", username_list)

username_list.remove("elarson")

print("After removing an element:", username_list)

This code removes "elarson" from the list. The elements that follow "elarson" are all shifted one
position closer to the beginning of the list.

Note: If there are two of the same element in a list, the .remove() method only removes the first
instance of that element and not all occurrences.

Module 4Module 3Module 2Module 1

50

.append()

The .append() method adds input to the end of a list. Its one parameter is the element you want to add
to the end of the list.

For example, you could use .append() to add "btang" to the end of the username_list :

username_list = ["bmoreno", "wjaffrey", "tshah", "sgilmore"]

print("Before appending an element:", username_list)

username_list.append("btang")

print("After appending an element:", username_list)

This code places "btang" at the end of the username_list , and all other elements remain in their
original positions.

The .append() method is often used with for loops to populate an empty list with elements. You can
explore how this works with the following code:

numbers_list = []

print("Before appending a sequence of numbers:", numbers_list)

for i in range(10):

 numbers_list.append(i)

print("After appending a sequence of numbers:", numbers_list)

Before the for loop, the numbers_list variable does not contain any elements. When it is printed, the
empty list is displayed. Then, the for loop iterates through a sequence of numbers and uses the
.append() method to add each of these numbers to numbers_list . After the loop, when the
numbers_list variable is printed, it displays these numbers.

.index()
Similar to the .index() method used for strings, the .index() method used for lists finds the first
occurrence of an element in a list and returns its index. It takes the element you're searching for as an
input.

Note: Although it has the same name and use as the .index() method used for strings, the .index()
method used for lists is not the same method. Methods are defined when defining a data type, and
because strings and lists are defined differently, the methods are also different.

Module 4Module 3Module 2Module 1

51

Using the username_list variable, you can use the .index() method to find the index of the
username "tshah" :

username_list = ["bmoreno", "wjaffrey", "tshah", "sgilmore", "btang"]

username_index = username_list.index("tshah")

print(username_index)

Because the index of "tshah" is 2, it outputs this number.

Similar to the .index() method used for strings, it only returns the index of the first occurrence of a list
item. So if the list included the username "tshah" twice, it would return the index of the first instance,
and not the second.

Key takeaways

Python offers a lot of ways to work with lists. Bracket notation allows you to extract elements and slices
from lists and also to alter them. List methods allow you to alter lists in a variety of ways. The .insert()
and .append() methods add elements to lists while the .remove() method allows you to remove
them. The .index() method allows you to find the index of an element in a list.

Module 4Module 3Module 2Module 1

More about regular expressions
You were previously introduced to regular expressions and a couple of symbols that you can use to
construct regular expression patterns. In this reading, you'll explore additional regular expression symbols
that can be used in a cybersecurity context. You'll also learn more about the re module and its
re.findall() function.

Basics of regular expressions
A regular expression (regex) is a sequence of characters that forms a pattern. You can use these in
Python to search for a variety of patterns. This could include IP addresses, emails, or device IDs.

To access regular expressions and related functions in Python, you need to import the re module first.
You should use the following line of code to import the re module:

import re

Regular expressions are stored in Python as strings. Then, these strings are used in re module functions
to search through other strings. There are many functions in the re module, but you will explore how
regular expressions work through re.findall() . The re.findall() function returns a list of matches
to a regular expression. It requires two parameters. The first is the string containing the regular
expression pattern, and the second is the string you want to search through.

The patterns that comprise a regular expression consist of alphanumeric characters and special symbols.
If a regular expression pattern consists only of alphanumeric characters, Python will review the specified
string for matches to this pattern and return them. In the following example, the first parameter is a
regular expression pattern consisting only of the alphanumeric characters "ts". The second parameter,
"tsnow, tshah, bmoreno" , is the string it will search through. You can run the following code to
explore what it returns:

import re

re.findall("ts", "tsnow, tshah, bmoreno")

The output is a list of only two elements, the two matches to "ts": ['ts', 'ts'] .

If you want to do more than search for specific strings, you must incorporate special symbols into your
regular expressions.

Regular expression symbols

Symbols for character types
You can use a variety of symbols to form a pattern for your regular expression. Some of these symbols
identify a particular type of character. For example, \w matches with any alphanumeric character.

Note: The \w symbol also matches with the underscore (_).

52

Module 4Module 3Module 2Module 1

You can run this code to explore what re.findall() returns when applying the regular expression of
"\w" to the device ID of "h32rb17 ".

import re

re.findall("\w", "h32rb17")

Because every character within this device ID is an alphanumeric character, Python returns a list with
seven elements. Each element represents one of the characters in the device ID.

You can use these additional symbols to match to specific kinds of characters:

● . matches to all characters, including symbols

● \d matches to all single digits [0-9]

● \s matches to all single spaces

● \. matches to the period character

The following code searches through the same device ID as the previous example but changes the
regular expression pattern to "\d". When you run it, it will return a different list:

import re

re.findall("\d", "h32rb17")

This time, the list contains only four elements. Each element is one of the numeric digits in the string.

Symbols to quantify occurrences
Other symbols quantify the number of occurrences of a specific character in the pattern. In a regular
expression pattern, you can add them after a character or a symbol identifying a character type to
specify the number of repetitions that match to the pattern.

For example, the + symbol represents one or more occurrences of a specific character. In the following
example, the pattern places it after the "\d" symbol to find matches to one or more occurrences of a
single digit:

import re

re.findall("\d+", "h32rb17")

With the regular expression "\d+", the list contains the two matches of "32" and "17".

Another symbol used to quantify the number of occurrences is the * symbol. The * symbol represents
zero, one, or more occurrences of a specific character. The following code substitutes the * symbol for
the + used in the previous example. You can run it to examine the difference:

import re

re.findall("\d*", "h32rb17")

53

Module 4Module 3Module 2Module 1

Because it also matches to zero occurrences, the list now contains empty strings for the characters that
were not single digits.

If you want to indicate a specific number of repetitions to allow, you can place this number in curly
brackets ({ }) after the character or symbol. In the following example, the regular expression pattern
"\d{2}" instructs Python to return all matches of exactly two single digits in a row from a string of
multiple device IDs:

import re

re.findall("\d{2}", "h32rb17 k825t0m c2994eh")

Because it is matching to two repetitions, when Python encounters a single digit, it checks whether there
is another one following it. If there is, Python adds the two digits to the list and goes on to the next digit. If
there isn't, it proceeds to the next digit without adding the first digit to the list.

Note: Python scans strings left-to-right when matching against a regular expression. When Python finds a
part of the string that matches the first expected character defined in the regular expression, it continues
to compare the subsequent characters to the expected pattern. When the pattern is complete, it starts
this process again. So in cases in which three digits appear in a row, it handles the third digit as a new
starting digit.

You can also specify a range within the curly brackets by separating two numbers with a comma. The first
number is the minimum number of repetitions and the second number is the maximum number of
repetitions. The following example returns all matches that have between one and three repetitions of a
single digit:

import re

re.findall("\d{1,3}", "h32rb17 k825t0m c2994eh")

The returned list contains elements of one digit like "0", two digits like "32" and three digits like "825".

Constructing a pattern
Constructing a regular expression requires you to break down the pattern you're searching for into
smaller chunks and represent those chunks using the symbols you've learned. Consider an example of a
string that contains multiple pieces of information about employees at an organization. For each
employee, the following string contains their employee ID, their username followed by a colon (:), their
attempted logins for the day, and their department:

employee_logins_string = "1001 bmoreno: 12 Marketing 1002 tshah: 7 Human
Resources 1003 sgilmore: 5 Finance"

Your task is to extract the username and the login attempts, without the employee's ID number or
department.

54

Module 4Module 3Module 2Module 1

To complete this task with regular expressions, you need to break down what you're searching for into
smaller components. In this case, those components are the varying number of characters in a username,
a colon, a space, and a varying number of single digits. The corresponding regular expression symbols are
\w+, :, \s, and \d+ respectively. Using these symbols as your regular expression, you can run the
following code to extract the strings:

import re

pattern = "\w+:\s\d+"

employee_logins_string = "1001 bmoreno: 12 Marketing 1002 tshah: 7 Human
Resources 1003 sgilmore: 5 Finance"

print(re.findall(pattern, employee_logins_string))

Note: Working with regular expressions can carry the risk of returning unneeded information or excluding
strings that you want to return. Therefore, it's useful to test your regular expressions.

Key takeaways
Regular expressions allow you to search through strings to find matches to specific patterns. You can use
regular expressions by importing the re module. This module contains multiple functions, including
re.findall() , which returns all matches to a pattern in the form of a list. To form a pattern, you use
characters and symbols. Symbols allow you to specify types of characters and to quantify how many
repetitions of a character or type of character can occur in the pattern.

55

Module 4Module 3Module 2Module 1

Course 7 - module 4

Essential Python components for automation
Throughout this course, you explored coding in Python. You've focused on variables, conditional
statements, iterative statements, functions, and a variety of ways to work with strings and lists. In this
reading, you will explore why these are all essential components when automating tasks through Python,
and you'll be introduced to another necessary component: working with files.

Automating tasks in Python
Automation is the use of technology to reduce human and manual effort to perform common and
repetitive tasks. As a security analyst, you will primarily use Python to automate tasks.

You have encountered multiple examples of how to use Python for automation in this course, including
investigating logins, managing access, and updating devices.

Automating cybersecurity-related tasks requires understanding the following Python components that
you've worked with in this course:

Variables

A variable is a container that stores data. Variables are essential for automation. Without them, you would
have to individually rewrite values for each action you took in Python.

Conditional statements

A conditional statement is a statement that evaluates code to determine if it meets a specified set of
conditions. Conditional statements allow you to check for conditions before performing actions. This is
much more efficient than manually evaluating whether to apply an action to each separate piece of data.

Iterative statements

An iterative statement is code that repeatedly executes a set of instructions. You explored two kinds of
iterative statements: for loops and while loops. In both cases, they allow you to perform the same
actions a certain number of times without the need to retype the same code each time. Using a for loop
allows you to automate repetition of that code based on a sequence, and using a while loop allows you
to automate the repetition based on a condition.

Functions

A function is a section of code that can be reused in a program. Functions help you automate your tasks
by reducing the need to incorporate the same code multiple places in a program. Instead, you can define
the function once and call it wherever you need it.

You can develop your own functions based on your particular needs. You can also incorporate the built-in
functions that exist directly in Python without needing to manually code them.

56

Module 4Module 3Module 2Module 1

Techniques for working with strings

String data is one of the most common data types that you'll encounter when automating cybersecurity
tasks through Python, and there are a lot of techniques that make working with strings efficient. You can
use bracket notation to access characters in a string through their indices. You can also use a variety of
functions and methods when working with strings, including str(), len(), and .index() .

Techniques for working with lists

List data is another common data type. Like with strings, you can use bracket notation to access a list
element through its index. Several methods also help you with automation when working with lists. These
include .insert() , .remove() , .append() , and .index() .

Example: Counting logins made by a flagged user

As one example, you may find that you need to investigate the logins of a specific user who has been
flagged for unusual activity. Specifically, you are responsible for counting how many times this user has
logged in for the day. If you are given a list identifying the username associated with each login attempt
made that day, you can automate this investigation in Python.

To automate the investigation, you'll need to incorporate the following Python components:

● A for loop will allow you to iterate through all the usernames in the list.
● Within the for loop, you should incorporate a conditional statement to examine whether each

username in the list matches the username of the flagged user.
● When the condition evaluates to True, you also need to increment a counter variable that keeps

track of the number of times the flagged user appears in the list.

Additionally, if you want to reuse this code multiple times, you can incorporate it into a function. The
function can include parameters that accept the username of the flagged user and the list to iterate
through. (The list would contain the usernames associated with all login attempts made that day.) The
function can use the counter variable to return the number of logins for that flagged user.

Working with files in Python
One additional component of automating cybersecurity-related tasks in Python is understanding how to
work with files. Security-related data will often be initially found in log files. A log is a record of events that
occur within an organization's systems. In logs, lines are often appended to the record as time
progresses.

Two common file formats for security logs are .txt files and .csv files. Both .txt and .csv files are
types of text files, meaning they contain only plain text. They do not contain images and do not specify
graphical properties of the text, including font, color, or spacing. In a .csv file, or a "comma-separated
values" file, the values are separated by commas. In a .txt file, there is not a specific format for
separating values, and they may be separated in a variety of ways, including spaces.

57

Module 4Module 3Module 2Module 1

You can easily extract data from .txt and .csv files. You can also convert both types into other file
formats.

Coming up, you'll learn how to import, read from, and write to files. You will also explore how to structure
the information contained in files.

Key takeaways
It is important for security analysts to be able to automate tasks in Python. This requires knowledge of
fundamental Python concepts, including variables, conditional statements, iterative statements, and
techniques for working with strings and lists. In addition, the ability to work with files is also essential for
automation in Python.

58

Module 4Module 3Module 2Module 1

Import files into Python
Previously, you explored how to open files in Python, convert them into strings, and read them. In this
reading, you'll review the syntax needed for this. You'll also focus on why the ability to work with files is
important for security analysts using Python, and you will learn about writing files.

Working with files in cybersecurity
Security analysts may need to access a variety of files when working in Python. Many of these files will be
logs. A log is a record of events that occur within an organization's systems.

For instance, there may be a log containing information on login attempts. This might be used to identify
unusual activity that signals attempts made by a malicious actor to access the system.

As another example, malicious actors that have breached the system might be capable of attacking
software applications. An analyst might need to access a log that contains information on software
applications that are experiencing issues.

Opening files in Python
To open a file called "update_log.txt" in Python for purposes of reading it, you can incorporate the
following line of code:

with open("update_log.txt", "r") as file:

This line consists of the with keyword, the open() function with its two parameters, and the as
keyword followed by a variable name. You must place a colon (:) at the end of the line.

with

The keyword with handles errors and manages external resources when used with other functions. In
this case, it's used with the open() function in order to open a file. It will then manage the resources by
closing the file after exiting the with statement.

Note: You can also use the open() function without the with keyword. However, you should close the
file you opened to ensure proper handling of the file.

59

Module 4Module 3Module 2Module 1

Because they're in the same directory, only the name of the file is required. The code can be written as
with open("update_log.txt", "r") as file: .

However, "access_log.txt" is not in the same directory as the Python file "log_parser.ipynb" .
Therefore, it's necessary to specify its absolute file path. A file path is the location of a file or directory.
An absolute file path starts from the highest-level directory, the root. In the following code, the first
parameter of the open() function includes the absolute file path to "access_log.txt" :

with open("/home/analyst/logs/access_log.txt", "r") as file:

Note: In Python, the names of files or their file paths can be handled as string data, and like all string data,
you must place them in quotation marks.

The second parameter of the open() function indicates what you want to do with the file. In both of
these examples, the second parameter is "r", which indicates that you want to read the file.
Alternatively, you can use "w" if you want to write to a file or "a" if you want to append to a file.

as

When you open a file using with open() , you must provide a variable that can store the file while you
are within the with statement. You can do this through the keyword as followed by this variable name.
The keyword as assigns a variable that references another object. The code with
open("update_log.txt", "r") as file: assigns file to reference the output of the open()
function within the indented code block that follows it.

60

Module 4Module 3Module 2Module 1

open()
The open() function opens a file in Python.

The first parameter identifies the file you want to open. In the following file structure,
"update_log.txt" is located in the same directory as the Python file that will access it,
"log_parser.ipynb" :

Reading files in Python
After you use the code with open("update_log.txt", "r") as file: to import
"update_log.txt" into the file variable, you should indicate what to do with the file on the indented
lines that follow it. For example, this code uses the .read() method to read the contents of the file:

with open("update_log.txt", "r") as file:

 updates = file.read()

print(updates)

The .read() method converts files into strings. This is necessary in order to use and display the
contents of the file that was read.

In this example, the file variable is used to generate a string of the file contents through .read() . This
string is then stored in another variable called updates . After this, print(updates) displays the string.

Once the file is read into the updates string, you can perform the same operations on it that you might
perform with any other string. For example, you could use the .index() method to return the index
where a certain character or substring appears. Or, you could use len() to return the length of this
string.

Writing files in Python
Security analysts may also need to write to files. This could happen for a variety of reasons. For example,
they might need to create a file containing the approved usernames on a new allow list. Or, they might
need to edit existing files to add data or to adhere to policies for standardization.

To write to a file, you will need to open the file with "w" or "a" as the second argument of open() .

You should use the "w" argument when you want to replace the contents of an existing file. When
working with the existing file update_log.txt , the code with open("update_log.txt", "w")
as file: opens it so that its contents can be replaced.

Additionally, you can use the "w" argument to create a new file. For example, with
open("update_log2.txt", "w") as file: creates and opens a new file called
"update_log2.txt" .

You should use the "a" argument if you want to append new information to the end of an existing file
rather than writing over it. The code with open("update_log.txt" , "a") as file: opens
"update_log.txt" so that new information can be appended to the end. Its existing information will
not be deleted.

Like when opening a file to read from it, you should indicate what to do with the file on the indented lines
that follow when you open a file to write to it. With both "w" and "a", you can use the .write()
method. The .write() method writes string data to a specified file.

61

Module 4Module 3Module 2Module 1

The following example uses the .write() method to append the content of the line variable to the file
"access_log.txt" .

line = "jrafael,192.168.243.140,4:56:27,True"

with open("access_log.txt", "a") as file:

 file.write(line)

Note: Calling the .write() method without using the with keyword when importing the file might
result in its arguments not being completely written to the file if the file is not properly closed in another
way.

Key takeaways
It's important for security analysts to be able to import files into Python and then read from or write to
them. Importing Python files involves using the with keyword, the open() function, and the as
keyword. Reading from and writing to files requires knowledge of the .read() and .write() methods
and the arguments to the open() function of "r", "w", and "a".

62

Module 4Module 3Module 2Module 1

Work with files in Python
You previously explored how to open files in Python as well as how to read them and write to them. You
also examined how to adjust the structure of file contents through the .split() method. In this reading,
you'll review the .split() method, and you'll also learn an additional method that can help you work
with file contents.

Parsing
Part of working with files involves structuring its contents to meet your needs. Parsing is the process of
converting data into a more readable format. Data may need to become more readable in a couple of
different ways. First, certain parts of your Python code may require modification into a specific format. By
converting data into this format, you enable Python to process it in a specific way. Second, programmers
need to read and interpret the results of their code, and parsing can also make the data more readable
for them.

Methods that can help you parse your data include .split() and .join() .

.split()

The basics of .split()

The .split() method converts a string into a list. It separates the string based on a specified character
that's passed into .split() as an argument.

In the following example, the usernames in the approved_users string are separated by a comma. For
this reason, a string containing the comma (",") is passed into .split() in order to parse it into a list.
Run this code and analyze the different contents of approved_users before and after the .split()
method is applied to it:

approved_users = "elarson,bmoreno,tshah,sgilmore,eraab"

print("before .split():", approved_users)

approved_users = approved_users.split(",")

print("after .split():", approved_users)

Before the .split() method is applied to approved_users , it contains a string, but after it is applied,
this string is converted to a list.

If you do not pass an argument into .split() , it will separate the string every time it encounters a
whitespace.

Note: A variety of characters are considered whitespaces by Python. These characters include spaces
between characters, returns for new lines, and others.

63

Module 4Module 3Module 2Module 1

The following example demonstrates how a string of usernames that are separated by space can be split
into a list through the .split() method:

removed_users = "wjaffrey jsoto abernard jhill awilliam"

print("before .split():", removed_users)

removed_users = removed_users.split()

print("after .split():", removed_users)

Because an argument isn't passed into .split() , Python splits the removed_users string at each
space when separating it into a list.

Applying .split() to files

The .split() method allows you to work with file content as a list after you've converted it to a string
through the .read() method. This is useful in a variety of ways. For example, if you want to iterate
through the file contents in a for loop, this can be easily done when it's converted into a list.

The following code opens the "update_log.txt" file. It then reads all of the file contents into the
updates variable as a string and splits the string in the updates variable into a list by creating a new
element at each whitespace:

with open("update_log.txt", "r") as file:

 updates = file.read()

updates = updates.split()

After this, through the updates variable, you can work with the contents of the "update_log.txt" file
in parts of your code that require it to be structured as a list.

Note: Because the line that contains .split() is not indented as part of the with statement, the file
closes first. Closing a file as soon as it is no longer needed helps maintain code readability. Once a file is
read into the updates variable, it is not needed and can be closed.

.join()

The basics of .join()

If you need to convert a list into a string, there is also a method for that. The .join() method
concatenates the elements of an iterable into a string. The syntax used with .join() is distinct from the
syntax used with .split() and other methods that you've worked with, such as .index() .

In methods like .split() or .index() , you append the method to the string or list that you're working
with and then pass in other arguments. For example, the code usernames.index(2) , appends the
.index() method to the variable usernames , which contains a list. It passes in 2 as the argument to
indicate which element to return.

64

Module 4Module 3Module 2Module 1

However, with .join() , you must pass the list that you want to concatenate into a string in as an
argument. You append .join() to a character that you want to separate each element with once they
are joined into a string.

For example, in the following code, the approved_users variable contains a list. If you want to join that
list into a string and separate each element with a comma, you can use ",".join(approved_users) .
Run the code and examine what it returns:

approved_users = ["elarson", "bmoreno", "tshah", "sgilmore", "eraab"]

print("before .join():", approved_users)

approved_users = ",".join(approved_users)

print("after .join():", approved_users)

Before .join() is applied, approved_users is a list of five elements. After it is applied, it is a string
with each username separated by a comma.

Note: Another way to separate elements when using the .join() method is to use "\n", which is the
newline character. The "\n" character indicates to separate the elements by placing them on new lines.

Applying .join() to files

When working with files, it may also be necessary to convert its contents back into a string. For example,
you may want to use the .write() method. The .write() method writes string data to a file. This
means that if you have converted a file's contents into a list while working with it, you'll need to convert it
back into a string before using .write() . You can use the .join() method for this.

You already examined how .split() could be applied to the contents of the "update_log.txt" file
once it is converted into a string through .read() and stored as updates :

with open("update_log.txt", "r") as file:

 updates = file.read()

updates = updates.split()

After you're through performing operations using the list in the updates variable, you might want to
replace "update_log.txt" with the new contents. To do so, you need to first convert updates back
into a string using .join() . Then, you can open the file using a with statement and use the .write()
method to write the updates string to the file:

updates = " ".join(updates)

with open("update_log.txt", "w") as file

 file.write(updates)

65

Module 4Module 3Module 2Module 1

The code " ".join(updates) indicates to separate each of the list elements in updates with a space
once joined back into a string. And because "w" is specified as the second argument of open() , Python
will overwrite the contents of "update_log.txt" with the string currently in the updates variable.

Key takeaways
An important element of working with files is being able to parse the data it contains. Parsing means
converting the data into a readable format. The .split() and .join() methods are both useful for
parsing data. The .split() method allows you to convert a string into a list, and the .join() method
allows you to convert a list into a string.

66

Module 4Module 3Module 2Module 1

Explore debugging techniques
Previously, you examined three types of errors you may encounter while working in Python and explored
strategies for debugging these errors. This reading further explores these concepts with additional
strategies and examples for debugging Python code.

Types of errors
It's a normal part of developing code in Python to get error messages or find that the code you're running
isn't working as you intended. The important thing is that you can figure out how to fix errors when they
occur. Understanding the three main types of errors can help. These types include syntax errors, logic
errors, and exceptions.

Syntax errors

A syntax error is an error that involves invalid usage of a programming language. Syntax errors occur
when there is a mistake with the Python syntax itself. Common examples of syntax errors include
forgetting a punctuation mark, such as a closing bracket for a list or a colon after a function header.

When you run code with syntax errors, the output will identify the location of the error with the line
number and a portion of the affected code. It also describes the error. Syntax errors often begin with the
label "SyntaxError:" . Then, this is followed by a description of the error. The description might simply
be "invalid syntax" . Or, if you forget a closing parenthesis on a function, the description might be
"unexpected EOF while parsing" . "EOF" stands for "end of file."

The following code contains a syntax error. Run it and examine its output:

message = "You are debugging a syntax error

print(message)

This outputs the message "SyntaxError: EOL while scanning string literal" . "EOL"
stands for "end of line." The error message also indicates that the error happens on the first line. The error
occurred because a quotation mark was missing at the end of the string on the first line. You can fix it by
adding that quotation mark.

Note: You will sometimes encounter the error label "IndentationError" instead of "SyntaxError" .
"IndentationError" is a subclass of "SyntaxError" that occurs when the indentation used with a
line of code is not syntactically correct.

Logic errors

A logic error is an error that results when the logic used in code produces unintended results. Logic
errors may not produce error messages. In other words, the code will not do what you expect it to do, but
it is still valid to the interpreter.

For example, using the wrong logical operator, such as a greater than or equal to sign (>=) instead of
greater than sign (>) can result in a logic error. Python will not evaluate a condition as you intended.
However, the code is valid, so it will run without an error message. 67

Module 4Module 3Module 2Module 1

The following example outputs a message related to whether or not a user has reached the maximum
number of five login attempts. The condition in the if statement should be login_attempts > 5 , but
it is written as login_attempts >= 5 . A value of 5 has been assigned to login_attempts so that
you can explore what it outputs in that instance:

login_attempts = 5

if login_attempts >= 5:

 print("User has not reached maximum number of login attempts.")

else:

 print("User has reached maximum number of login attempts.")

The output displays the message "User has not reached maximum number of login
attempts." However, this is not true since the maximum number of login attempts is five. This is a logic
error.

Logic errors can also result when you assign the wrong value in a condition or when a mistake with
indentation means that a line of code executes in a way that was not planned.

Exceptions

An exception is an error that involves code that cannot be executed even though it is syntactically
correct. This happens for a variety of reasons.

One common cause of an exception is when the code includes a variable that hasn't been assigned or a
function that hasn't been defined. In this case, your output will include "NameError" to indicate that this
is a name error. After you run the following code, use the error message to determine which variable was
not assigned:

username = "elarson"

month = "March"

total_logins = 75

failed_logins = 18

print("Login report for", username, "in", month)

print("Total logins:", total_logins)

print("Failed logins:", failed_logins)

print("Unusual logins:", unusual_logins)

The output indicates there is a "NameError" involving the unusual_logins variable. You can fix this
by assigning this variable a value.

68

Module 4Module 3Module 2Module 1

In addition to name errors, the following messages are output for other types of exceptions:

● "IndexError" : An index error occurs when you place an index in bracket notation that does not
exist in the sequence being referenced. For example, in the list usernames = ["bmoreno",
"tshah", "elarson"] , the indices are 0, 1, and 2. If you referenced this list with the statement
print(usernames[3]) , this would result in an index error.

● "TypeError" : A type error results from using the wrong data type. For example, if you tried to
perform a mathematical calculation by adding a string value to an integer, you would get a type
error.

● "FileNotFound" : A file not found error occurs when you try to open a file that does not exist in
the specified location.

Debugging strategies
Keep in mind that if you have multiple errors, the Python interpreter will output error messages one at a
time, starting with the first error it encounters. After you fix that error and run the code again, the
interpreter will output another message for the next syntax error or exception it encounters.

When dealing with syntax errors, the error messages you receive in the output will generally help you fix
the error. However, with logic errors and exceptions, additional strategies may be needed.

Debuggers

In this course, you have been running code in a notebook environment. However, you may write Python
code in an Integrated Development Environment (IDE). An Integrated Development Environment (IDE)
is a software application for writing code that provides editing assistance and error correction tools.
Many IDEs offer error detection tools in the form of a debugger. A debugger is a software tool that helps
to locate the source of an error and assess its causes.

In cases when you can't find the line of code that is causing the issue, debuggers help you narrow down
the source of the error in your program. They do this by working with breakpoints. Breakpoints are
markers placed on certain lines of executable code that indicate which sections of code should run when
debugging.

Some debuggers also have a feature that allows you to check the values stored in variables as they
change throughout your code. This is especially helpful for logic errors so that you can locate where
variable values have unintentionally changed.

Use print statements

Another debugging strategy is to incorporate temporary print statements that are designed to identify
the source of the error. You should strategically incorporate these print statements to print at various
locations in the code. You can specify line numbers as well as descriptive text about the location.

69

Module 4Module 3Module 2Module 1

For example, you may have code that is intended to add new users to an approved list and then display
the approved list. The code should not add users that are already on the approved list. If you analyze the
output of the following code after you run it, you will realize that there is a logic error:

new_users = ["sgilmore", "bmoreno"]

approved_users = ["bmoreno", "tshah", "elarson"]

def add_users():

 for user in new_users:

 if user in approved_users:

 print(user,"already in list")

 approved_users.append(user)

add_users()

print(approved_users)

Even though you get the message "bmoreno already in list" , a second instance of "bmoreno" is
added to the list. In the following code, print statements have been added to the code. When you run it,
you can examine what prints:

new_users = ["sgilmore", "bmoreno"]

approved_users = ["bmoreno", "tshah", "elarson"]

def add_users():

 for user in new_users:

 print("line 5 - inside for loop")

 if user in approved_users:

 print("line 7 - inside if statement")

 print(user,"already in list")

 print("line 9 - before .append method")

 approved_users.append(user)

add_users()

print(approved_users)

70

Module 4Module 3Module 2Module 1

The print statement "line 5 - inside for loop" outputs twice, indicating that Python has
entered the for loop for each username in new_users . This is as expected. Additionally, the print
statement "line 7 - inside if statement" only outputs once, and this is also as expected
because only one of these usernames was already in approved_users .

However, the print statement "line 9 - before .append method" outputs twice. This means the
code calls the .append() method for both usernames even though one is already in approved_users .
This helps isolate the logic error to this area. This can help you realize that the line of code
approved_users.append(user) should be the body of an else statement so that it only executes
when user is not in approved_users .

Key takeaways
There are three main types of errors you'll encounter while coding in Python. Syntax errors involve invalid
usage of the programming language. Logic errors occur when the logic produced in the code produces
unintended results. Exceptions involve code that cannot be executed even though it is syntactically
correct. You will receive error messages for syntax errors and exceptions that can help you fix these
mistakes. Additionally, using debuggers and inserting print statements can help you identify logic errors
and further debug exceptions.

71

Module 4Module 3Module 2Module 1

Get started on the next course
Congratulations on completing Course 7 of the Google Cybersecurity Certificate: Automate
Cybersecurity Tasks with Python! In this part of the program, you learned about writing effective
Python code to automate cybersecurity tasks. You started with foundational components of the Python
language, including data types, variables, conditional statements, and iterative statements. Then you built
on those skills by learning how to incorporate functions into your code and work with string and list data.
You also explored modules and libraries, as well as guidelines for improving your code’s readability. Finally,
you used your Python skills to import and parse files and to develop algorithms that automate security
tasks.

The Google Cybersecurity Certificate has eight courses:

72

Module 4Module 3Module 2Module 1

1. Foundations of Cybersecurity — Explore the cybersecurity profession, including significant
events that led to the development of the cybersecurity field and its continued importance to
organizational operations. Learn about entry-level cybersecurity roles and responsibilities.

2. Play It Safe: Manage Security Risks — Identify how cybersecurity professionals use frameworks
and controls to protect business operations, and explore common cybersecurity tools.

3. Connect and Protect: Networks and Network Security — Gain an understanding of
network-level vulnerabilities and how to secure networks.

4. Tools of the Trade: Linux and SQL — Explore foundational computing skills, including
communicating with the Linux operating system through the command line and querying
databases with SQL.

5. Assets, Threats, and Vulnerabilities — Learn about the importance of security controls and
developing a threat actor mindset to protect and defend an organization’s assets from various
threats, risks, and vulnerabilities.

6. Sound the Alarm: Detection and Response — Understand the incident response lifecycle and
practice using tools to detect and respond to cybersecurity incidents.

7. Automate Cybersecurity Tasks with Python — Explore the Python programming language and
write code to automate cybersecurity tasks. (This is the course you just completed. Well done!)

8. Put It to Work: Prepare for Cybersecurity Jobs — Learn about incident classification, escalation,
and ways to communicate with stakeholders. This course closes out the program with tips on how
to engage with the cybersecurity community and prepare for your job search.

Now that you have completed this course, you’re ready to move on to the next course: Put It to Work:
Prepare for Cybersecurity Jobs.

Keep up the great work!

https://www.coursera.org/learn/prepare-for-cybersecurity-jobs/home/week/1
https://www.coursera.org/learn/prepare-for-cybersecurity-jobs/home/week/1

